Table of Contents

Introduction 1.1
Getting Started 1.2
Installation 1.2.1

Run the server 1.2.2

Run the console 1.2.3

Run the Studio 1.24
Classes 1.2.5
Clusters 1.2.6
Record ID 1.2.7
Relationships 1.2.8
Basic SQL 1.2.9
Working with Graphs 1.2.10
Using Schema with Graphs 1.2.11
Setup a Distributed Database 1.2.12
Working with Distributed Graphs 1.2.13
Data Modeling 1.3
Basic Concepts 1.3.1
Supported Types 1.3.1.1
Inheritance 1.3.1.2
Concurrency 1.3.1.3

Schema 1.3.14

Graph or Document API? 1.3.1.5

Cluster Selection 1.3.1.6

M anaging Dates 1.3.1.7

Graph Consistency 1.3.2
Fetching Strategies 1.3.3

Use Cases 1.3.4
Time Series 1.34.1

Chat 1.3.4.2

Key Value 1.3.4.3

Queue system 1.3.4.4
Administration 1.4
Console 1.4.1
Backup 1.4.1.1

Begin 1.4.1.2

Browse Class 1.4.1.3

Browse Cluster 1.4.1.4

List Classes 1.4.1.5

Cluster Status 1.4.1.6

List Clusters 1.4.1.7

List Servers 1.4.1.8

List Server Users
Check Database
Commit

Config

Config Get
Config Set
Connect

Create Cluster
Create Database
Create Index
Create Link
Create Property
Declare Intent
Delete
Dictionary Get
Dictionary Keys

Dictionary Put

Dictionary Remove

Disconnect

Display Record

Display Raw Record

Drop Cluster
Drop Database
Drop Server User
Export Database
Export Record
Freeze DB

Get

Gremlin

Import Database
Indexes

Info

Info Class

Info Property
Insert

Js

Jss

List Databases
List Connections
Load Record
Load Script
Profiler
Properties

Release DB

1.4.1.9
1.4.1.10
1.4.1.11
1.4.1.12
1.4.1.13
1.4.1.14
1.4.1.15
1.4.1.16
1.4.1.17
1.4.1.18
1.4.1.19
1.4.1.20
1.4.1.21
1.4.1.22
1.4.1.23
1.4.1.24
1.4.1.25
1.4.1.26
1.4.1.27
1.4.1.28
1.4.1.29
1.4.1.30
1.4.1.31
1.4.1.32
1.4.1.33
1.4.1.34
1.4.1.35
1.4.1.36
1.4.1.37
1.4.1.38
1.4.1.39
1.4.1.40
1.4.1.41
1.4.1.42
1.4.1.43
1.4.1.44
1.4.1.45
1.4.1.46
1.4.1.47
1.4.1.48
1.4.1.49
1.4.1.50
1.4.1.51

1.4.1.52

N

Reload Record 1.4.1.53

Repair Database 1.4.1.54
Restore 1.4.1.55
Rollback 1.4.1.56

Set 1.4.1.57

Set Server User 1.4.1.58
Sleep 1.4.1.59
Upgrading 1.4.2
Backward compatibility 1.4.2.1
From 2.1.xto 2.2.x 1.4.2.2
From 2.0.xto 2.1.x 1.4.2.3
From 1.7.xto 2.0.x 1.4.2.4
From 1.6.xto 1.7.x 1.4.2.5
From 1.5.xto 1.6.x 1.4.2.6
From 1.4.xto 1.5.x 1.4.2.7
From 1.3.xto 1.4.x 1.4.2.8
Backup and Restore 1.4.3
Incremental Backup and Restore 1431
Export and Import 1.4.4
Export format 1441
Import From RDBM S 1.4.4.2

To Document Model 1.4.4.2.1

To Graph Model 1.44.2.2

Import From Neo4j 1443
Neo4j to OrientDB Importer 1.4.4.3.1

Tutorial: Importing the northwind Database from Neo4j 1.4.43.1.1

Import from Neo4j using GraphM L 1.4.4.3.2

Tutorial: Importing the movie Database from Neo4j 1.4.43.2.1

ETL 1.4.5
Configuration 1.4.5.1
Blocks 1.4.5.2
Sources 1.4.5.3
Extractors 1454
Transformers 1.4.5.5
Loaders 1.4.5.6
Tutorial: Importing the Open Beer Database into Orient DB 1.4.5.7
Import from CSV to a Graph 1.4.5.8
Import a tree structure 1.4.5.9
Import from JSON 1.4.5.10
Import from RDBM S 1.4.5.11
Import from DB-Pedia 1.4.5.12
Import from Parse (Facebook) 1.4.5.13
Logging 1.4.6
Scheduler 1.4.7

Studio 1.4.8

Query 1.4.8.1
Edit Document 1.4.8.2
Edit Vertex 1.4.8.3
Schema 1.4.8.4
Class 1.4.8.5
Graph Editor 1.4.8.6
Functions 1.4.8.7
Security 1.4.8.8
Database M anagement 1.4.8.9
Dashboard 1.4.8.10
Server M anagement 1.4.8.11
Cluster M anagement 1.4.8.12
Data Centers 1.4.8.13
Query Profiler 1.4.8.14
Studio Auditing 1.4.8.15
Studio Backup M anagement 1.4.8.16
Teleporter 1.4.8.17
Neo4j to OrientDB Importer 1.4.8.18
Teleporter 1.4.9
Installation and configuration 1.49.1
Execution strategies 1.49.2
Sequential executions and One-Way Synchronizer 1.49.3
Import filters 1494
Inheritance 1.4.9.5
Single Table Inheritance 1.49.5.1
Table Per Class Inheritance 1.4.9.5.2
Table Per Concrete Class Inheritance 1.4.9.5.3
Import Configuration 1.4.9.6
Troubleshooting 1.4.10
Java 1.4.10.1
Query Examples 1.4.10.2
Performance Tuning 1.4.11
Setting Configuration 1.4.11.1
Graph API 1.4.11.2
Document API 1.4.11.3
Object API 1.4.114
Profiler 1.4.11.5
Leak Detector 1.4.11.6
Distributed tuning 1.4.11.7
Security 1.4.12
Database security 1.4.12.1
Server security 1.4.12.2
Database encryption 1.4.12.3

Secure SSL connections 1.4.12.4

Security Configuration 1.4.12.5
Kerberos Example 1.4.12.6
Security v2.2 Code Changes 1.4.12.7
Security v2.2 New Features 1.4.12.8
Symmetric Key Authentication 1.4.12.9
Server M anagement 1.4.13
Install as Service on Unix 1.4.13.1
Install as Service on Windows 1.4.13.2
Install with Docker 1.4.13.3
Stress Test Tool 1.4.14
APIs and Drivers 1.5
Functions 1.5.1
Creation 1.5.1.1
Usage 1.5.1.2
Accessing the Database 1.5.1.3
Server 1.5.1.4
exists() 1.5.14.1
flush() 1.5.1.4.2

get Argument() 1.5.14.3

get Arguments() 1.5.1.4.4
getCharacterSet() 1.5.1.4.5
getContent() 1.5.1.4.6
getContentType() 1.5.14.7
getIfM atch() 1.5.1.4.8
getHeader() 1.5.1.49
getHttp M ethod() 1.5.1.4.10
getHttp Version() 1.5.1.4.11
getParameter() 1.5.1.4.12
getParameters() 1.5.1.4.13
getSessionld() 1.5.1.4.14
getURL() 1.5.1.4.15
getUser() 1.5.1.4.16
hasParameters() 1.5.1.4.17
isMultipart() 1.5.1.4.18
send() 1.5.1.4.19
sendStream() 1.5.1.4.20
setCharacterSet() 1.5.1.4.21
setContentType() 1.5.1.4.22
setHeader() 1.5.1.4.23
writeContent() 1.5.1.4.24
writeHeaders() 1.5.1.4.25
writeLine() 1.5.1.4.26

writeRecord() 1.5.1.4.27

wu

writeRecords()

writeStatus()

Database

addEdge()

addVertex()

begin()

browseClass()
browseCluster()
close()

command()

commit()

countClass()
countEdges()

count Vertices()
createEdgeType()
createVertexI'ype()
delete()

drop Cluster()
dropEdgeType()

drop VertexType()
getClusterldBy Name()
getClusterNameById()
getClusterNames()
getClusterRecordSizeById()
getClusterRecordSizeBy Name()
getClusters()

getEdge()
getEdgeBaseType()
getEdgeType()
getUser()

get Vertex()

get VertexBaseType()
get VertexType()
isAutoStartTx()
isUseLightweight Edges()
load()

open()

query ()

removeEdge()

remove Vertex()
rollback()

setUser()
setAuotStartTx()

setUseLightweightEdges()

1.5.1.4.28
1.5.1.4.29
1.5.1.5
1.5.1.5.1
1.5.1.5.2
1.5.1.5.3
1.5.1.5.4
1.5.1.5.5
1.5.1.5.6
1.5.1.5.7
1.5.1.5.8
1.5.1.5.9
1.5.1.5.10
1.5.1.5.11
1.5.1.5.12
1.5.1.5.13
1.5.1.5.14
1.5.1.5.15
1.5.1.5.16
1.5.1.5.17
1.5.1.5.18
1.5.1.5.19
1.5.1.5.20
1.5.1.5.21
1.5.1.5.22
1.5.1.5.23
1.5.1.5.24
1.5.1.5.25
1.5.1.5.26
1.5.1.5.27
1.5.1.5.28
1.5.1.5.29
1.5.1.5.30
1.5.1.5.31
1.5.1.5.32
1.5.1.5.33
1.5.1.5.34
1.5.1.5.35
1.5.1.5.36
1.5.1.5.37
1.5.1.5.38
1.5.1.5.39
1.5.1.5.40

1.5.1.5.41

Available Plugins and Tools
Java API
Java API Introduction
Graph API
Vertices and Edges
Blueprints Extension
Factory
Schema
Class
Property
Partitioned
Comparison
Lightweight Edges
Graph Batch Insert
Document API
Database
Documents
Schema
Classes
Property
Field Part
Comparison
Object APIL
Binding
Traverse
Live Query
Multi-Threading
Transactions
Binary Data
Web Apps
JDBC Driver
JPA
IMX
Gremlin API
Javascript
Javascript API
OrientJS (Node.js)
Server API
Database API
Record API
Class API
Class
Property

Records

1.5.2
1.5.3
1.53.1
1.5.3.2
1.5.3.2.1
1.5.3.2.2
1.5.3.2.3
1.5.3.2.4
1.5.3.24.1
1.5.3.2.4.2
1.5.3.2.5
1.5.3.2.6
1.5.3.2.7
1.5.3.2.8
1.5.3.3
1.5.3.3.1
1.5.3.3.2
1.5.3.3.3
1.5.3.3.3.1
1.5.3.3.3.2
1.5.3.3.4
1.5.3.3.5
1.5.34
1.5.34.1
1.5.3.5
1.5.3.6
1.5.3.7
1.5.3.8
1.5.3.9
1.5.3.10
1.5.3.11
1.5.3.12
1.5.4
1.5.5
1.5.6
1.5.6.1
1.5.7
1.5.7.1
1.5.7.2
1.5.7.3
1.5.7.4
1.5.7.4.1
1.5.7.4.2

1.5.7.4.3

Index API 1.5.7.5

Function API 1.5.7.6
Queries 1.5.7.7
create() 1.5.7.7.1
delete() 1.5.7.7.2
fetch() 1.5.7.7.3
insert() 1.5.7.7.4
liveQuery () 1.5.7.7.5
select() 1.5.7.7.6
transform() 1.5.7.7.7
traverse() 1.5.7.7.8
update() 1.5.7.7.9
Transactions 1.5.7.8
Events 1.5.7.9
PyOrient 1.5.8
Client 1.5.8.1
command() 1.5.8.1.1
batch() 1.5.8.1.2
data_cluster_add() 1.5.8.1.3
data_cluster_count() 1.5.8.1.4
data_cluster_data_range() 1.5.8.1.5
data_cluster_drop() 1.5.8.1.6
db_count_records() 1.5.8.1.7
db_create() 1.5.8.1.8
db_drop() 1.5.8.1.9
db_exists() 1.5.8.1.10
db_list() 1.5.8.1.11
db_open() 1.5.8.1.12
db_reload() 1.5.8.1.13
db_size() 1.5.8.1.14
get_session_token() 1.5.8.1.15
query() 1.5.8.1.16
query_async() 1.5.8.1.17
record_create() 1.5.8.1.18
record_delete() 1.5.8.1.19
record_load() 1.5.8.1.20
record_update() 1.5.8.1.21
set_session_token() 1.5.8.1.22
tx_commit() 1.5.8.1.23
attach() 1.5.8.1.23.1

begin() 1.5.8.1.23.2

commit() 1.5.8.1.23.3
rollback() 1.5.8.1.23.4

OGM 1.5.8.2

Connection 1.5.8.2.1

Schemas 1.5.8.2.2
Brokers 1.5.8.2.3
Batch 1.5.8.24
Scripts 1.5.8.2.5
C#/.NET 1.5.9
Server 1.59.1
ConfigGet() 1.59.1.1
ConfigList() 1.59.1.2
ConfigSet() 1.59.1.3
CreateDatabase() 1.59.14
DatabaseExists() 1.59.1.5
Databases() 1.5.9.1.6
DropDatabase() 1.5.9.1.7
Database 1.5.9.2
Clusters() 1.5.9.2.1
Command() 1.5.9.2.2
GetClusterIdFor() 1.5.9.2.3
GetClusterNameFor() 1.5.9.2.4
GetClusters() 1.5.9.2.5
Gremlin() 1.5.9.2.6
Insert() 1.5.9.2.7
JavaScript() 1.59.2.8
Query() 1.5.9.29
Select() 1.5.9.2.10
SqlBatch() 1.5.9.2.11
Update() 1.5.9.2.12
Query 1.5.9.3
Conditionals 1.5.9.3.1
Limiters 1.5.9.3.2

Sort 1.5.9.3.3
Transaction 1.5.94
Add() 1.5.9.4.1
AddEdge() 1.5.9.4.2
AddOrUpdate() 1.5.9.4.3
Delete() 1.59.44
GetPendingObject() 1.5.9.4.5
Update() 1.5.9.4.6
PHP 1.5.10
Client 1.5.10.1
Server 1.5.10.2
dbCreate() 1.5.10.2.1
dbDrop() 1.5.10.2.2

dbExists() 1.5.10.2.3

9

dbList()

Database

command()
dataClusterAdd()
dataClusterCount()
dataClusterDrop ()
dataClusterDataRange()
dbCountRecords()
dbReload()
dbSize()

query ()

query Async()
recordCreate()
recordLoad()
recordUpdate()
sqlBatch()

ClusterM ap

drop ClusterID()
getClusterID()

getIdList()

Record

ID

getOClass()
getOData()
getRid()
jsonSerialize()
recordSerialize()
setOClass()
setOData()
setRid()

Transaction

Elixir

attach()
begin()
commit()

rollback()

Server

create_db()
db_exists?()
distrib-config()
drop_db()

Database

command()

create_record()

1.5.10.2.4
1.5.10.3
1.5.10.3.1
1.5.10.3.2
1.5.10.3.3
1.5.10.3.4
1.5.10.3.5
1.5.10.3.6
1.5.10.3.7
1.5.10.3.8
1.5.10.3.9
1.5.10.3.10
1.5.10.3.11
1.5.10.3.12
1.5.10.3.13
1.5.10.3.14
1.5.10.4
1.5.10.4.1
1.5.10.4.2
1.5.10.4.3
1.5.10.5
1.5.10.5.1
1.5.10.5.2
1.5.10.5.3
1.5.10.5.4
1.5.10.5.5
1.5.10.5.6
1.5.10.5.7
1.5.10.5.8
1.5.10.6
1.5.10.7
1.5.10.7.1
1.5.10.7.2
1.5.10.7.3
1.5.10.7.4
1.5.11
1.5.11.1
1.5.11.1.1
1.5.11.1.2
1.5.11.1.3
1.5.11.1.4
1.5.11.2
1.5.11.2.1

1.5.11.2.2

db_countrecords() 1.5.11.2.3

db_reload() 1.5.11.2.4

db_size() 1.5.11.2.5
delete_record() 1.5.11.2.6
live_query() 1.5.11.2.7
live_query_unsubscribe() 1.5.11.2.8
load_record() 1.5.11.2.9

script() 1.5.11.2.10
update_record() 1.5.11.2.11

Types 1.5.11.3
Structs 1.5.11.4
Binary Record 1.5.11.4.1

Date 1.5.11.4.2
DateTime 1.5.11.4.3
Document 1.5.11.4.4
FetchPlan 1.5.11.4.5

RID 1.5.11.4.6

Scala API 1.5.12
HTTP API 1.5.13
Binary Protocol 1.5.14
CSV Serialization 1.5.14.1
Schemaless Serialization 1.5.14.2
Commands 1.5.14.3
SQL Reference 1.6
Commands 1.6.1
Alter Class 1.6.1.1
Alter Cluster 1.6.1.2
Alter Database 1.6.1.3
Alter Property 1.6.1.4
Alter Sequence 1.6.1.5
Create Class 1.6.1.6
Create Cluster 1.6.1.7
Create Edge 1.6.1.8
Create Function 1.6.1.9
Create Index 1.6.1.10
Create Link 1.6.1.11
Create Property 1.6.1.12
Create Sequence 1.6.1.13
Create User 1.6.1.14
Create Vertex 1.6.1.15
Delete 1.6.1.16
Delete Edge 1.6.1.17
Delete Vertex 1.6.1.18

Drop Class 1.6.1.19

Drop Cluster
Drop Index
Drop Property
Drop Sequence
Drop User
Explain

Find References

Grant

HA Remove Server

HA Status

HA Sync Cluster

HA Sync Database

HA Set
Insert

Live Select

Live Unsubscribe

Match

Move Vertex

Optimize Database

Rebuild Index
Revoke

Select
Traverse

Truncate Class

Truncate Cluster

Truncate Record

Update
Update Edge
Filtering
Functions
Methods
Batch

Pagination

Sequences and auto increment

Pivoting with Query

Command Cache

Query Optimization
Indexing

SB-Tree

Hash

Auto-Sharding

Full Text

Lucene Full Text

Lucene Spatial Index

1.6.1.20
1.6.1.21
1.6.1.22
1.6.1.23
1.6.1.24
1.6.1.25
1.6.1.26
1.6.1.27
1.6.1.28
1.6.1.29
1.6.1.30
1.6.1.31
1.6.1.32
1.6.1.33
1.6.1.34
1.6.1.35
1.6.1.36
1.6.1.37
1.6.1.38
1.6.1.39
1.6.1.40
1.6.1.41
1.6.1.42
1.6.1.43
1.6.1.44
1.6.1.45
1.6.1.46
1.6.1.47
1.6.2
1.6.3
1.6.4
1.6.5
1.6.6
1.6.7
1.6.8
1.6.9
1.6.10
1.7
1.71
1.7.2
1.7.3
1.7.4
1.7.5

1.7.6

Scaling 1.8

Lifecycle 1.8.1
Configuration 1.8.2
Server M anager 1.8.2.1
Runtime Configuration 1.8.2.2
Replication 1.8.3
Sharding 1.8.4
Data Centers 1.8.5
Tuning 1.8.6
HA SQL Commands 1.8.7
HA Remove Server 1.8.7.1

HA Status 1.8.7.2

HA Sync Cluster 1.8.7.3

HA Sync Database 1.8.7.4

HA Set 1.8.7.5
Internals 1.9
Storages 1.9.1
Memory storage 19.1.1
PLocal storage 1.9.1.2
Engine 1.9.1.2.1
Disk-Cache 1.9.1.2.2

WAL (Journal) 1.9.1.2.3

Local storage (deprecated) 1.9.1.3
Clusters 1.9.2
Limits 1.9.3
RidBag 1.94
SQL Syntax 1.9.5
Custom Index Engine 1.9.6
Caching 1.9.7
Transaction 1.9.8
Hooks - Triggers 1.9.9
Dynamic Hooks 1.9.10
Java (Native) Hooks 1.9.10.1
Java Hook Tutorial 1.9.10.2
Server 1.9.11
Server Status 1.9.11.1
Embed the Server 1.9.11.2
Web Server 1.9.11.3
System Database 1.9.12
System Users 1.9.13
Implementation 1.9.13.1
Multi Tenant 1.9.14
Plugins 1.9.15
Automatic Backup 1.9.15.1

SysLog
Mail
JMX
Rexster
Gephi Graph Render
spider-box
Script Interpreter Plugin
Contribute to OrientDB
Hackaton
Report an issue
Get in touch
More Tutorials
Presentations
Roadmap
Enterprise Edition
Auditing
Tutorials
Tutorial: Importing the Open Beer Database into OrientDB
Tutorial: Importing the movie Database from Neo4;j
Tutorial: Importing the northwind Database from Neo4;j
Java Hook Tutorial

Release Notes

1.9.15.2
1.9.15.3
1.9.15.4
1.9.15.5
1.9.15.6
1.9.15.7
1.9.15.8
1.10
1.10.1
1.10.2
1.10.2.1
1.10.2.2
1.10.3
1.10.3.1
1.11
1.11.1
1.12
1121
1.12.2
1.12.3
1.12.4
1.13

14

OrientDB Manual - version 2.2.x

~ Qrien

Quick Navigation

Getting Started
Introduction to OrientDB
Installation
First Steps
Troubleshooting

Enterprise Edition

Operations

e Installation
e 3rd party Plugins
e Upgrade

e Configuration

Main Topics
Basic Concepts
Supported Data Types
Inheritance
Security
Indexes
ACID Transactions
Functions
Caching Levels

Common Use Cases

e Distributed Architecture (replication, sharding and high-availability)

e Performance Tuning

e ETL to Import any kind of data into OrientDB

e Import from Relational DB
e Backup and Restore

e Export and Import

Quick References

Developers
SQL
Gremlin
HTTP API
Java API
NodeJS
PHP
Python
.NET
Other Drivers
Network Binary Protocol

Javadocs

https://github.com/orientechnologies/PhpOrient
https://github.com/orientechnologies/pyorient
https://github.com/orientechnologies/OrientDB-NET.binary
http://www.orientechnologies.com/javadoc/latest/

e Console

e Studio web tool

e Workbench (Enterprise Edition)

e OrientDB Server

e Network-Binary-Protocol

e Gephi Graph Analysis Visual tool
e Rexster Support and configuration

e Continuous integration

Resources

e User Group - Have question, troubles, problems?
e f#orientdb IRC channel on freenode

e Professional Support

e Training - Training and classes.

e Events - Follow OrientDB at the next event!

e Team - Meet the team behind OrientDB

e Contribute - Contribute to the project.

e Who is using OrientDB? - Clients using OrientDB in production.

Questions or Need Help?

Check out our Get in Touch page for different ways of getting in touch with us.

PDF

This documentation is also available in PDF format.

Welcome to OrientDB - the first M ulti-M odel Open Source NoSQL DBMSS that brings together the power of graphs and the flexibility

of documents into one scalable high-performance operational database.

Every effort has been made to ensure the accuracy of this manual. However, OrientDB, LTD. makes no warranties with respect
to this documentation and disclaims any implied warranties of merchantability and fitness for a particular purpose. The

information in this document is subject to change without notice.

http://orientdb.com/enterprise/last/introduction.html
http://helios.orientechnologies.com/
http://orientdb.com/active-user-community
http://webchat.freenode.net/?channels=orientdb
http://orientdb.com/support
http://orientdb.com/training
http://orientdb.com/event
http://orientdb.com/customers

Getting Started

Over the past few years, there has been an explosion of many NoSQL database solutions and products. The meaning of the word
"NoSQL" is not a campaign against the SQL language. In fact, OrientDB allows for SQL syntax! NoSQL is probably best described by
the following:

NoSQL, meaning "not only SQL", is a movement encouraging developers and business people to open their minds and consider

new possibilities beyond the classic relational approach to data persistence.

Alternatives to relational database management systems have existed for many years, but they have been relegated primarily to niche use
cases such as telecommunications, medicine, CAD and others. Interest in NoSQL alternatives like OrientDB is increasing dramatically.
Not surprisingly, many of the largest web companies like Google, Amazon, Facebook, Foursquare and Twitter are using NoSQL based

solutions in their production environments.

What motivates companies to leave the comfort of a well established relational database world? It is basically the great need to better

solve today's data problems. Specifically, there are a few key areas:

e Performance

e Scalability (often huge)

e Smaller footprint

e Developer productivity and friendliness

e Schema flexibility

Most of these areas also happen to be the requirements of modern web applications. A few years ago, developers designed systems that
could handle hundreds of concurrent users. Today it is not uncommon to have a potential target of thousands or millions of users
connected and served at the same time.

Changing technology requirements have been taken into account on the application front by creating frameworks, introducing standards
and leveraging best practices. However, in the database world, the situation has remained more or less the same for over 30 years. From
the 1970s until recently, relational DBM Ss have played the dominant role. Programming languages and methodologies have evolved, but

the concept of data persistence and the DBM S have remained unchanged for the most part: it is all still tables, records and joins.

NoSQL Models

NoSQL-based solutions in general provide a powerful, scalable, and flexible way to solve data needs and use cases, which have
previously been managed by relational databases. To summarize the NoSQL options, we'll examine the most common models or

categories:

e Key/ Value databases: where the data model is reduced to a simple hash table, which consists of key / value pairs. It is often

easily distributed across multiple servers. The most recognized products of this group include Redis, Dynamo, and Riak.

e Column-oriented databases: where the data is stored in sections of columns offering more flexibility and easy aggregation.

Facebook's Cassandra, Google's BigTable, and Amazon's SimpleDB are some examples of column-oriented databases.

o Document databases: where the data model consists of document collections, in which each individual document can have

multiple fields without necessarily having a defined schema. The best known products of this group are MongoDB and CouchDB.

e Graph databases: where the domain model consists of vertices interconnected by edges creating rich graph structures. The best

known products of this group are OrientDB, Neo4j and Titan.

OrientDB is a document-graph database, meaning it has full native graph capabilities coupled with features normally only found

in document databases.

Each of these categories or models has its own peculiarities, strengths and limitations. There is no single category or model, which is
better than the others. However, certain types of databases are better at solving specific problems. This leads to the motto of NoSQL:

choose the best tool for your specific use case.

The goal of Orient Technologies in building OrientDB was to create a robust, highly scalable database that can perform optimally in the
widest possible set of use cases. Our product is designed to be a fantastic "go to" solution for practically all of y our data persistence

needs. In the following parts of this tutorial, we will look closely at OrientDB, one of the best open-source, multi-model, next

generation NoSQL products on the market today.

Installation

OrientDB is available in two editions:

e Community Edition is released as an open source project under the Apache 2 license. This license allows unrestricted free usage

for both open source and commercial projects.

e Enterprise Edition is commercial software built on top of the Community Edition. Enterprise is developed by the same team that

developed the OrientDB engine. It serves as an extension of the Community Edition, providing Enterprise features, such as:

o Non-Stop Backup and Restore

o Scheduled FULL and Incremental Backups
o Query Profiler

o Distributed Clustering configuration

o Metrics Recording

o Live Monitoring with configurable Alerts

The Community Edition is available as a binary package for download or as source code on GitHub. The Enterprise Edition license is

included with Support purchases.

Use Docker

If you have Docker installed in your computer, this is the easiest way to run OrientDB. From the command line type:

$ docker run -d --name orientdb -p 2424:2424 -p 2480:2480 \
-e ORIENTDB_ROOT_PASSWORD=root orientdb:latest

Where instead of "root", type the root's password you want to use.

Use Ansible

If you manage your servers through Ansible, you can use the following role : https:/galaxy.ansible.com/migibert/orientdb which is highly

customizable and allows you to deploy OrientDB as a standalone instance or multiple clusterized instances.
For using it, you can follow these steps :

Install the role

ansible-galaxy install migibert.orientdb

Create an Ansible inventory

Assuming you have one two servers with respective IPs fixed at 192.168.10.5 and 192.168.10.6, using ubuntu user.

[orientdb-servers]
192.168.20.5 ansible_ssh_user=ubuntu
192.168.20.6 ansible_ssh_user=ubuntu

Create an Ansible playbook

In this example, we provision a two node cluster using multicast discovery mode. Please note that this playbook assumes java is already

installed on the machine so you should have one step before that install Java 8 on the servers

http://orientdb.com/orientdb/
http://www.apache.org/licenses/LICENSE-2.0.html
http://orientdb.com/orientdb-enterprise/
http://orientdb.com/support/
https://galaxy.ansible.com/migibert/orientdb

- hosts: orientdb-servers
become: yes
vars:
orientdb_version: 2.0.5
orientdb_enable_distributed: true
orientdb_distributed:
hazelcast_network_port: 2434
hazelcast_group: orientdb
hazelcast_password: orientdb
multicast_enabled: True
multicast_group: 235.1.1.1
multicast_port: 2434
tcp_enabled: False
tcp_members: []
orientdb_users:
- name: root
password: root
tasks:
- apt:
name: openjdk-8-jdk
state: present
roles:
- role: orientdb-role

Run the playbook ansible-playbook -i inventory playbook.yml

Prerequisites

Both editions of OrientDB run on any operating system that implements the Java Virtual machine (JVM). Examples of these include:

e Linux, all distributions, including ARM (Raspberry Pi, etc.)
e MacOSX

o Microsoft Windows, from 95/NT and later

e Solaris

e HP-UX

e IBM AIX

OrientDB requires Java, version 1.7 or higher.

Note: In OSGi containers, OrientDB uses a ConcurrentLinkedHashMap implementation provided by concurrentlinkedhashmap to
create the LRU based cache. This library actively uses the sun.misc package which is usually not exposed as a system package.
To overcome this limitation you should add property org.osgi.framework.system.packages.extra with value sun.misc to your

list of framework properties.

It may be as simple as passing an argument to the VM starting the platform:

$ java -Dorg.osgi.framework.system.packages.extra=sun.misc

Binary Installation

OrientDB provides a pre-compiled binary package to install the database on your system. Depending on your operating system, this is
a tarred or zipped package that contains all the relevant files you need to run OrientDB. For desktop installations, go to OrientDB

Downloads and select the package that best suits your system.

On server installations, you can use the wget utility:

$ wget https://s3.us-east-2.amazonaws.com/orientdb3/releases/2.2.37/orientdb-community-2.2.37.zip -0 orientdb-community-2.2.37
.zip

Whether you use your web browser or wget , unzip or extract the downloaded file into a directory convenient for your use, (for
example, /opt/orientdb/ on Linux). This creates a directory called orientdb-community-2.2.37 with relevant files and scripts, which

you will need to run OrientDB on your system.

http://www.java.com/en/download
https://github.com/ben-manes/concurrentlinkedhashmap
http://orientdb.com/download/

Source Code Installation

In addition to downloading the binary packages, you also have the option of compiling OrientDB from the Community Edition source
code, available on GitHub. This process requires that you install Git and Apache Maven on your system.

To compile OrientDB from source code, clone the Community Edition repository, then run Maven (mvn) in the newly created

directory:

$ git https://github.com/orientechnologies/orientdb
$ git checkout develop

$ orientdb

$ mvn clean install

It is possible to skip tests:

$ mvn clean install -DskipTests

The develop branch contains code for the next version of OrientDB. Stable versions are tagged on master branch. For each maintained

version OrientDB has its own hotfix branch. As the time of writing this notes, the state of branches is:

develop: work in progress for next 3.0.x release (3.0.x~SNAPSHOT)
2.2.x: hot fix for next 2.2.x stable release (2.2.x-SNAPSHOT)
2.1.x: hot fix for next 2.1.x stable release (2.1.x-SNAPSHOT)
2.0.x: hot fix for next 2.0.x stable release (2.0.x-SNAPSHOT)

e last tag on master is 2.2.0

The build process installs all jars in the local maven repository and creates archives under the distribution module inside the target
directory. At the time of writing, building from branch 2.1.x gave:

$1s -1 distribution/target/
total 199920

1088 26 Jan 09:57 archive-tmp

102 26 Jan 09:57 databases

102 26 Jan 09:57 orientdb-community-2.2.1-SNAPSHOT.dir
48814386 26 Jan 09:57 orientdb-community-2.2.1-SNAPSHOT.tar.gz
53542231 26 Jan 09:58 orientdb-community-2.2.1-SNAPSHOT.zip
$

The directory orientdb-community-2.2.1-SNAPSHOT.dir contains the OrientDB distribution uncompressed. Take a look to Contribute to

OrientDB if you want to be involved.

Update Permissions

For Linux, Mac OS X and UNIX-based operating sy stem, you need to change the permissions on some of the files after compiling from

source.

$ chmod 755 bin/*.sh
$ chmod -R 777 config

These commands update the execute permissions on files in the config/ directory and shell scripts in bin/ , ensuring that you can

run the scripts or programs that you've compiled.

Post-installation Tasks

For desktop users installing the binary, OrientDB is now installed and can be run through shell scripts found in the package bin
directory of the installation. For servers, there are some additional steps that you need to take in order to manage the database server for

OrientDB as a service. The procedure for this varies, depending on your operating sy stem.

e Install as Service on Unix, Linux and Mac OS X

e Install as Service on Microsoft Windows

http://www.git-scm.com/
https://maven.apache.org/

Upgrading

When the time comes to upgrade to a newer version of OrientDB, the methods vary depending on how you chose to install it in the first
place. If you installed from binary downloads, repeat the download process above and update any symbolic links or shortcuts to point

to the new directory.

For systems where OrientDB was built from source, pull down the latest source code and compile from source.

$ git pull origin master
$ mvn clean install

Bear in mind that when you build from source, you can switch branches to build different versions of OrientDB using Git. For example,

$ git checkout 2.2.x
$ mvn clean install

builds the 2.2.x branch, instead of master .

Building a single executable jar with OrientDB

OrientDB for internal components like engines, operators, factories uses Java SPI Service Provider Interface. That means that the jars of
OrientDB are shipped with files in META-INF/services that contains the implementation of components. Bear in mind that when
building a single executable jar, you have to concatenate the content of files with the same name in different orientdb-*.jar . If you are

using M aven Shade Plugin you can use Service Resource Transformer to do that.

Other Resources

To learn more about how to install OrientDB on specific environments, please refer to the guides below:

e Install with Docker

e Install with Ansible

e Install on Linux Ubuntu

e Install on JBoss AS

e Install on GlassFish

e Install on Ubuntu 12.04 VPS (DigitalOcean)

e Install on Vagrant

https://docs.oracle.com/javase/tutorial/ext/basics/spi.html
https://maven.apache.org/plugins/maven-shade-plugin/
https://maven.apache.org/plugins/maven-shade-plugin/examples/resource-transformers.html#ServicesResourceTransformer
https://github.com/migibert/orientdb-role
http://famvdploeg.com/blog/2013/01/setting-up-an-orientdb-server-on-ubuntu/
http://team.ops4j.org/wiki/display/ORIENT/Installation+on+JBoss+AS
http://team.ops4j.org/wiki/display/ORIENT/Installation+on+GlassFish
https://www.digitalocean.com/community/articles/how-to-install-and-use-orientdb-on-an-ubuntu-12-04-vps
https://bitbucket.org/nuspy/vagrant-orientdb-with-tinkerpop/overview

Running the OrientDB Server

When you finish installing OrientDB, whether you build it from source or download the binary package, you are ready to launch the
database server. You can either start it through the system daemon or through the provided server script. This article only covers the

latter.

Note: If you would like to run OrientDB as a service on your system, there are some additional steps that you need to take. This
provides alternate methods for starting the server and allows you to launch it as a daemon when your system boots. For more

information on this process see:

e Install OrientDB as a Service on Unix, Linux and Mac OS X

e Install OrientDB as a Service on Microsoft Windows

Starting the Database Server

While you can run the database server as system daemon, you also have the option of starting it directly. In the OrientDB installation
directory, (that is $ORIENTDB_HOME), under bin , there is a file named server.sh on Unix-based systems and server.bat on

Windows. Executing this file starts the server.

To launch the OrientDB database server, run the following commands:

$ $ORIENTDB_HOME/bin

$./server.sh

’ -::rrrr::-rrrrrr\;;
r Srrrrrrr g
Pr i trrrrrry s
rrcrrrrrrrrg ‘::I rr HHP b apoo
Prrrrrrrrrrr iyt rr
Srrrrrrrrrr iy rr
Srrrrrrrrrr iy TR EEEEEEE
Precrrtrrrrrrrrr s o cire groag
rrrrcirrrrrrr "8 rorr
op8Bppppoooa 5 0pp 8 p
1o ‘rr-

rrr I

e Y, SERVER

2012-12-28 01:25:46:319 INFO Loading configuration from: config/orientdb-server-
config.xml... [0ServerConfigurationLoaderXml]

2012-12-28 01:25:46:625 INFO OrientDB Server v1.6 is starting up... [OServer]
2012-12-28 01:25:47:142 INFO -> Loaded memory database 'temp' [OServer]
2012-12-28 01:25:47:289 INFO Listening binary connections on 0.0.0.0:2424
[0ServerNetworkListener]

2012-12-28 01:25:47:290 INFO Listening http connections on 0.0.0.0:2480
[0ServerNetworkListener]

2012-12-28 01:25:47:317 INFO OrientDB Server v1.6 is active. [0Server]

The database server is now running, It is accessible on your system through ports 2424 and 248e . At the first startup the server will

ask for the root user password. The password is stored in the config file.

Stop the Server

On the console where the server is running a simple CTRL+c will shutdown the server.

The shutdown.sh (shutdown.bat) script could be used to stop the server:

$ $ORIENTDB_HOME/bin

$./shutdown.sh -p ROOT_PASSWORD

On *nix systems a simple call to shutdown.sh will stop the server running on localhost:

$ $ORIENTDB_HOME/bin

$./shutdown.sh

It is possible to stop servers running on remote hosts or even on different ports on localhost:

$ $ORIENTDB_HOME/bin

$./shutdown.sh -h odbl.mydomain.com -P 2424-2430 -u root -p ROOT_PASSWORD

List of params

e -h|--host HOSTNAME or IP ADDRESS : the host or ip where OrientDB is running, default to localhost
e -P|--ports PORT or PORT RANGE : single port value or range of ports; default to 2424-2430

e -u|--user ROOT USERNAME : root's username; deafult to root

e -p |--password ROOT PASSWORD : root's user password; mandatory

NOTE On Windows systems password is always mandatory because the script isn't able to discover the pid of the OrientDB's

process.

Server Log Messages

Following the masthead, the database server begins to print log messages to standard output. This provides you with a guide to what

OrientDB does as it starts up on your system.
1. The database server loads its configuration file from the file $ORIENTDB_HOME/config/orientdb-server-config.xml .
For more information on this step, see OrientDB Server.
2. The database server loads the temp database into memory. You can use this database for storing temporary data.
3. The database server begins listening for binary connections on port 2424 for all configured networks, (©.0.0.0).

4. The database server begins listening for HTTP connections on port 248e for all configured networks, (©.0.0.0).

Accessing the Database Server

By default, OrientDB listens on two different ports for external connections.

e Binary: OrientDB listens on port 2424 for binary connections from the console and for clients and drivers that support the

Network Binary Protocol.

e HTTP: OrientDB listens on port 2480 for HTTP connections from OrientDB Studio Web Tool and clients and drivers that
support the HTTP/REST protocol, or similar tools, such as cURL.

If you would like the database server to listen at different ports or IP address, you can define these values in the configuration file

config/orientdb-server-config.xml .

http://www.orientechnologies.com/docs/last/orientdb-studio.wiki/Home-page.html
http://en.wikipedia.org/wiki/cURL

Running the OrientDB Console

Once the server is running there are various methods you can use to connect to your database server to an individual databases. Two
such methods are the Network Binary and HTTP/REST protocols. In addition to these OrientDB provides a command-line interface for
connecting to and working with the database server.

Starting the OrientDB Console

In the OrientDB installation directory (that is, $ORIENTDB_HOME , where you installed the database) under bin , there is a file called

console.sh for Unix-based systems or console.bat for Windows users.

To launch the OrientDB console, run the following command after you start the database server:

$ $ORTENTDB_HOME/bin

$./console.sh
OrientDB console v.X.X.X (build ©) www.orientdb.com
Type 'HELP' to display all the commands supported.

Installing extensions for GREMLIN language v.X.X.X

orientdb>

The OrientDB console is now running. From this prompt you can connect to and manage any remote or local databases available to you.

Using the HELP Command

In the event that you are unfamiliar with OrientDB and the available commands, or if you need help at any time, you can use the HELP

command, or type ? into the console prompt.
orientdb> HeELP

AVAILABLE COMMANDS:
* alter class <command-text> Alter a class in the database schema
* alter cluster <command-text> Alter class in the database schema

* help Print this help
* exit Close the console

For each console command available to you, HeLP documents its basic use and what it does. If you know the particular command and

need details on its use, you can provide arguments to HeLP for further clarification.
orientdb> HeLp SELECT

COMMAND: SELECT

- Execute a query against the database and display the results.
SYNTAX: select <query-text>

WHERE :

- <query-text>: The query to execute

Connecting to Server Instances

There are some console commands, such as LIST DATABASES oOr CREATE DATABASE , which you can only run while connected to a server

instance. For other commands, however, you must also connect to a database, before they run without error.

Before you can connect to a fresh server instance and fully control it, you need to know the root password for the database. The
root password is located in the configuration file at config/orientdb-server-config.xml . You can find it by searching for the

<users> element. If you want to change it, edit the configuration file and restart the server.

<users>
<user resources="*"
password="my_root_password"
name="root"/>
<user resources='"connect, server.listDatabases, server.dblist"
password="my_guest_password"
name="guest"/>
</users>

With the required credentials, you can connect to the database server instance on your system, or establish a remote connection to one

running on a different machine.

orientdb> CONNECT remote:localhost root my_root_password

Connecting to remote Server instance [remote:localhost] with user 'root'...OK

Once you have established a connection to the database server, you can begin to execute commands on that server, such as LIST

DATABASES and CREATE DATABASE .

orientdb> LIST DATABASES

Found 1 databases:
* GratefulDeadConcerts (plocal)

To connect to this database or to a different one, use the conNecT command from the console and specify the server URL, username,

and password. By default, each database has an admin user with a password of admin .

Warning: Always change the default password on production databases.
The above LIST DATABASES command shows a GratefulbDeadConcerts installed on the local server. To connect to this database, run the
following command:

orientdb> CONNECT remote:localhost/GratefulDeadConcerts admin admin

Connecting to database [remote:localhost/GratefulDeadConcerts] with user 'admin'...OK

The connecT command takes a specific syntax for its URL. That is, remote:localhost/GratefulDeadConcerts in the example. It has

three parts:

e Protocol: The first part of the database address is the protocol the console should use in the connection. In the example, this is

remote , indicating that it should use the TCP/IP protocol.

e Address: The second part of the database address is hostname or IP address of the database server that you want the console to

connect to. In the example, this is localhost , since the connection is made to a server instance running on the local file system.

e Database: The third part of the address is the name of the database that you want to use. In the case of the example, this is

GratefulDeadConcerts .

For more detailed information about the commands, see Console Commands.

Run the console

Note: The OrientDB distribution comes with the bundled database Gratefulbeadconcerts which represents the Graph of the

Grateful Dead's concerts. This database can be used by anyone to start exploring the features and characteristics of OrientDB.

28

http://en.wikipedia.org/wiki/Grateful_Dead

Run the Studio

If you're more comfortable interacting with database systems through a graphical interface then you can accomplish the most common
database tasks with OrientDB Studio, the web interface.

Connect to OrientDB Studio

Start Server Connect via web Browser

AN

Open your commandline tool
(Terminal on Linux/Mac)

With the server running, B
Run one of these commands open your web brwoser and
from inside the OridentDB type:

downlad folder
localhost: 2480
% binfserver.sh (Linux/Mac)
or into your address bar.
% binfserver.bat Windows)
From here you can view your
With the server running you databases and also create
may access it via port 2480, a new database.

You can run OrientDB Studio
from your web browser or

run console.sh and connect to
your server via command line.

Connecting to Studio

By default, there are no additional steps that you need to take to start OrientDB Studio. When you launch the Server, whether through

the start-up script server.sh or as a system daemon, the Studio web interface opens automatically with it.

$ firefox http://localhost:2480

Run the Studio

&% Server Management

User

Password

From here you can create a new database, connect to or drop an existing database, import a public database and navigate to the Server

management interface.

For more information on the OrientDB Studio, see Studio.

30

Classes

Multi-model support in the OrientDB engine provides a number of ways in ap proaching and understanding its basic concepts. These
concepts are clearest when viewed from the perspective of the Document Database API. Like many database management systems,
OrientDB uses the Record as an element of storage. There are many types of records, but with the Document Database API, records
always use the Document type. Documents are formed by a set of key/value pairs, referred to as fields and properties, and can belong to

a class.

The Class is a concept drawn from the Object-oriented programming paradigm. It is a type of data model that allows you to define
certain rules for records that belong to it. In the traditional Document database model, it is comparable to the collection, while in the

Relational database model it is comparable to the table.
For more information on classes in general, see Wikip edia.

To list all the configured classes on your system, use the LIsT cLAsses command in the console:

orientdb> LIST CLASSES

CLASSES:
------------------- docoocoocoooooliooocooo00cIooooC o000 S oGP
NAME | SUPERCLASS |CLUSTERS | RECORDS |
------------------- e
AbstractPerson | | -1 | 0 |
Account | | 12 | 1126 |
Actor | | 91 | 3 |
Address | | 19 | 166 |
Animal | | 17 | 0 |
I I I I
Whiz | | 14 | 1001 |
------------------- T
TOTAL 22775 |
___ +

Working with Classes

In order to start using classes with your own applications, you need to understand how to create and configure a class for use. The class
in OrientDB is similar to the table in relational databases, but unlike tables, classes can be schema-less, schema-full or mixed. A class can

inherit properties from other classes thereby creating trees of classes (though the super-class relationship).

Each class has its own cluster or clusters, (created by default, if none are defined). For now we should know that a cluster is a place

where a group of records are stored. We'll soon see how clustering improves performance of querying the database.
For more information on classes in OrientDB, see Class.

To create a new class, use the CRrREATE cLASS command:
orientdb> CREATE cLASS Student

Class created successfully. Total classes in database now: 92

This creates a class called student . Given that no cluster was defined in the cREATE cLAss command, OrientDB creates a default
cluster called student , to contain records assigned to this class. For the moment, the class has no records or properties tied to it. It is

now displayed in the crasses listings.

Adding Properties to a Class

http://en.wikipedia.org/wiki/Class_in_object-oriented_programming

As mentioned above, OrientDB does allow you to work in a schema-less mode. That is, it allows you to create classes without defining
their properties. However, in the event that you would like to define indexes or constraints for your class, properties are mandatory.

Following the comparison to relational databases, if classes in OrientDB are similar to tables, properties are the columns on those tables.

To create new properties on Student , use the CREATE PROPERTY command in the console:
orientdb> CREATE PROPERTY Student.name STRING

Property created successfully with id=1

orientdb> CREATE PROPERTY Student.surname STRING

Property created successfully with id=2

orientdb> CREATE PROPERTY Student.birthDate

Property created successfully with id=3

These commands create three new properties on the student class to provide you with areas to define the individual student's name,

surname and date of birth.

Displaying Class Information

On occasion, you may need to reference a particular class to see what clusters it belongs to and any properties configured for its use.

Using the 1InNFO cLAss command, you can display information on the current configuration and properties of a class.

To display information on the class sStudent , use the INFO cLASS command:

orientdb> 1INFO cLASS Student

Class................: Student

Default cluster......: student (id=96)

Supported cluster ids: [96]

Properties:

----------- T L J g pupupupp U Sy
NAME | TYPE | LINKED TYPE/ | MANDATORY | READONLY | NOT NULL | MIN | MAX |

I | CLASS I I I I I I

----------- T L Jppupupupp U S ———
birthDate | DATE | null | false | false | false | |

name | STRING | null | false | false | false | |
surname | STRING | null | false | false | false | |
----------- e =

Adding Constraints to Properties

Constraints create limits on the data values assigned to properties. For instance, the type, the minimum or maximum size of, whether or

not a value is mandatory or if null values are permitted to the property.

To add a constraint, use the ALTER PROPERTY command:
orientdb> ALTER PROPERTY Student.name MIN

Property updated successfully

This command adds a constraint to Student onthe name property. It sets it so that any value given to this class and property must

have a minimum of three characters.

Viewing Records in a Class

Classes contain and define records in OrientDB. You can view all records that belong to a class using the Browse cLAss command and

data belonging to a particular record with the bIspLAY RECORD command.

In the above examples, you created a student class and defined the schema for records that belong to that class, but you did not create
these records or add any data. As a result, running these commands on the student class returns no results. Instead, for the examples

below, consider the ouser class.
orientdb> 1INFO CLASS oOuser

CLASS 'Ouser'

Super classes........: [0Identity]
Default cluster......: ouser (id=5)
Supported cluster ids: [5]
Cluster selection....: round-robin
Oversize.............: 0.0
PROPERTIES
---------- T T
NAME | TYPE | LINKED TYPE/ | MANDATORY | READONLY | NOT NULL | MIN | MAX |
I | CLASS I I I I I I
---------- T T
password | STRING | null | true | false | true | |
roles | LINKSET | ORole | false | false | false | |
name | STRING | null | true | false | true | |
status | STRING | null | true | false | true | |
---------- T LT g gy
INDEXES (1 altogether)
------------------------------- e
NAME | PROPERTIES |
------------------------------- e
Ouser .name | name |
------------------------------- T

OrientDB ships with a number of default classes, which it uses in configuration and in managing data on your system, (the classes with

the o prefixshown in the cLasses command output). The ouser class defines the users on your database.

To see records assigned to the ouser class, run the BroOwSE cLASS command:

orientdb> BROWSE CLASS OUser

R +ommm - £ e mm e e mee e mee e mmmemmmmooomeooo--o +--mm - +ommam - +
| @RID | @Class| name | password | status | roles |
R Hommm - £ e mm e e mee e mee e mmmemmmmooomeooo--o +o-mm o S +
0 | #5:0 | OUser | admin | {SHA-256}8C6976E5B5410415BDE9G... | ACTIVE | [1] |
1 | #5:1 | OUser | reader | {SHA-256}3D0941964AA3EBDCBOGEF... | ACTIVE | [1] |
2 | #5:2 | OUser | writer | {SHA-256}B93006774CBDD4B299389... | ACTIVE | [1] |

In the example, you are listing all of the users of the database. While this is fine for your initial setup and as an
example, it is not particularly secure. To further improve security in production environments, see Security.

When you run BRrowsE cLASS , the first column in the output provides the identifier number, which you can use to display detailed

information on that particular record.

To show the first record browsed from the ouser class, run the DISPLAY RECORD command:

orientdb> DISPLAY RECORD ©

__ +
Document - @class: OUser @rid: #5:0 @version: 1 |
---------- o C OO P OC O OO CCE OO0 COE O COOO O CC OO0 SO0 CCO000Co0000C0000000000000000aqp
Name | Value [
---------- o C OO OCCCOCCCEO oo EE O o OO CC OO0 SO0 CCO000C00000C0000000000000000aqp
name | admin |
password | {SHA-256}8C6976E5B5410415BDE908BD4DEE15DFB167A9C873F8A81F6F2AB. .. |
status | ACTIVE |
roles | [#4:0=#4:0] |
---------- o C OO PO C OO OO0 CEO oo oo COOOOCCO000CO00CC0000C00000C0000000000000000agp

Bear in mind that this command references the last call of srowse cLAss . You can continue to display other records, but you cannot

display records from another class until you browse that particular class.

Clusters

The Cluster is a place where a group of records are stored. Like the Class, it is comparable with the collection in traditional document
databases, and in relational databases with the table. However, this is a loose comparison given that unlike a table, clusters allow you to

store the data of a class in different physical locations.

To list all the configured clusters on your system, use the L1ST cLuSTERS command in the console:

orientdb> LIST CLUSTERS

CLUSTERS:
------------- Pocoooodooococoooootiooooooo00 S oap
NAME | ID | TYPE | RECORDS |
------------- Pocoooodooococoooootiooooooo00 S odp
account | 11 | PHYSICAL | 1107 |
actor | 91 | PHYSICAL | 3 |
address | 19 | PHYSICAL | 166 |
animal | 17 | PHYSICAL | 0 |
animalrace | 16 | PHYSICAL | 2 |
| I I I
------------- B T I pepupupup S
TOTAL 23481 |
__ +

Understanding Clusters

By default, OrientDB creates one cluster for each Class. Starting from v2.2, OrientDB automatically creates multiple clusters per each

class (the number of clusters created is equals to the number of CPU's cores available on the server) to improve using of parallelism. All

15

records of a class are stored in the same cluster, which has the same name as the class. You can create up to 32,767 (or, 2~ - 1) clusters

in a database. Understanding the concepts of classes and clusters allows you to take advantage of the power of clusters in designing new

databases.

While the default strategy is that each class maps to one cluster, a class can rely on multiple clusters. For instance, you can spawn

records physically in multiple locations, thereby creating multiple clusters.

Here, you have a class customer that relies on two clusters:
® USA_customers , which is a cluster that contains all customers in the United States.
® China_customers , which is a cluster that contains all customers in China.

In this deployment, the default cluster is UsA_customers . Whenever commands are run on the customer class, such as INSERT

statements, OrientDB assigns this new data to the default cluster.

The new entry from the INSERT statement is added to the usa customers cluster, given that it's the default. Inserting data into a non-

default cluster would require that you specify the cluster you want to insert the data into in your statement.

When you run a query on the customer class, such as SELECT queries, for instance:

OrientDB scans all clusters associated with the class in looking for matches.

In the event that you know the cluster in which the data is stored, you can query that cluster directly to avoid scanning all others and

optimize the query.

Here, OrientDB only scans the china_customers cluster of the customer class in looking for matches

Note: The method OrientDB uses to select the cluster, where it inserts new records, is configurable and extensible. For more

information, see Cluster Selection.

Working with Clusters

While running in HA mode, upon the creation of a new record (document, vertex, edge, etc.) the coordinator server automatically assigns

the cluster among the list of local clusters for the current server. For more information look at HA: Cluster Ownership.

You may also find it beneficial to locate different clusters on different servers, physically separating where you store records in your

database. The advantages of this include:

e Optimization Faster query execution against clusters, given that you need only search a subset of the clusters in a class.
e Indexes With good partitioning, you can reduce or remove the use of indexes.

Parallel Queries: Queries can be run in parallel when made to data on multiple disks.

Sharding: You can shard large data-sets across multiple instances.

Adding Clusters

When you create a class, OrientDB creates a default cluster of the same name. In order for you to take advantage of the power of
clusters, you need to create additional clusters on the class. This is done with the ALTER cLAss statement in conjunction with the

ADDCLUSTER parameter.

To add a cluster to the customer class, use an ALTER CLASS statement in the console:
orientdb> ALTER CLASS Customer ADDCLUSTER UK_Customers

Class updated successfully

You now have a third cluster for the customer class, covering those customers located in the United Kingdom.

Viewing Records in a Cluster

Clusters store the records contained by a class in OrientDB. You can view all records that belong to a cluster using the BROWSE CLUSTER

command and the data belonging to a particular record with the bpIspLAY RECORD command.

In the above example, you added a cluster to a class for storing records customer information based on their locations around the world,
but you did not create these records or add any data. As a result, running these commands on the customer class returns no results.

Instead, for the examples below, consider the ouser cluster.

OrientDB ships with a number of default clusters to store data from its default classes. You can see these using the cLUSTERS

command. Among these, there is the ouser cluster, which stores data of the users on your database.

To see records stored in the ouser cluster, run the BROWSE CLUSTER command:

orientdb> BROWSE CLUSTER OUser

ACTIVE

R £ R +eomamo-- mmme e e mm e e mee e mmememeooomeooo--o +--mm - +ommam - +
| @RID | @CLASS | name | password | status | roles |
R +ommm - £ e mm e e mee e e mee e mmmemmmmooomeooo-oo +--mm - +ommam - +
O | #5:0 | OUser | admin | {SHA-256}8C6976E5B5410415BDE9G... | ACTIVE | [1] |
1 | #5:1 | OUser | reader | {SHA-256}3D0941964AA3EBDCBOOCC... | ACTIVE | [1] |

I I I I

OUser | writer | {SHA-256}B93006774CBDD4B299389. .. [1]

The results are identical to executing Browst cLAss on the ouser class, given that there is only one cluster for the ouser class in this

example.

In the example, you are listing all of the users of the database. While this is fine for your initial setup and as an
example, it is not particularly secure. To further improve security in production environments, see Security.

When you run BROWSE CLUSTER , the first column in the output provides the identifier number, which you can use to display detailed

information on that particular record.

To show the first record browsed from the ouser cluster, run the DISPLAY RECORD command:

orientdb> DISPLAY RECORD ©

__ +
Document - @class: OUser @rid: #5:0 @version: 1 |
---------- o C OO P OCCCOCCCEO oo ECEOCO OO CC OO0 SO0 CC0000CC000000000000000000000agp
Name | Value |
---------- o C OO PO C OO OO0 CEO oo OO COOONOCCO000C000CC0000000000C0000000000000000aqp
name | admin |
password | {SHA-256}8C6976E5B5410415BDE908BD4DEE15DFB167A9C873F8A81F6F2AB. .. |
status | ACTIVE |
roles | [#4:0=#4:0] |
---------- B

Bear in mind that this command references the last call of Browse cLUSTER . You can continue to display other records, but you cannot

display records from another cluster until you browse that particular cluster.

Record ID

In OrientDB, each record has its own self-assigned unique ID within the database called Record ID or RID. It is composed of two parts:

#<cluster-id>:<cluster-position>

That is,

o <cluster-id> The cluster identifier.

e <cluster-position> The position of the data within the cluster.

5 63

Each database can have a maximum of 32,767 clusters, or 21 - 1. Each cluster can handle up to 9,223,372,036,780,000 records, or 2,

namely 9,223,372 trillion records.

The maximum size of a database is 2° - records, or 302,231,454,903 trillion records. Due to limitations in hardware resources,

OrientDB has not been tested at such high numbers, but there are users working with OrientDB in the billions of records range.

Loading Records

Each record has a Record ID, which notes the physical position of the record inside the database. What this means is that when you load

arecord by its RID, the load is significantly faster than it would be otherwise.

In document and relational databases, the more data that you have, the slower the database responds. OrientDB handles relationships as
physical links to the records. The relationship is assigned only once, when the edge is created o(1) . You can compare this to relational

databases, which compute the relationship every time the database is run 0(log N) . In OrientDB, the size of a database does not effect
the traverse speed. The speed remains constant, whether for one record or one hundred billion records. This is a critical feature in the age
of Big Data.

To directly load a record, use the LoApD Recoro command in the console.

orientdb> Loap #

Name | Value

_____________ e e e e
addresses | [NOT LOADED: #19:159]
salary | 0.0
employees | 100004
id | 4
name | Microsoft4
initialized | false
salary2 | 0.0
checkpoint | true
created | Sat Dec 29 23:13:49 CET 2012
_____________ S

The LoAD RECORD command returns some useful information about this record. It shows:
e that it is a document. OrientDB supports different types of records, but document is the only type covered in this chapter.
e that it belongs to the company class.

e that its current version is 8 . OrientDB uses an M VCC system. Every time you update a record, its version increments by one.

that we have different field types: floats in salary and salary2 , integers for employees and id , stringfor name , booleans

for initialized and checkpoint , and date-time for created .

that the field addresses has been NoT LOADED . It is also a LINK to another record, #19:159 . This is a relationship. For more

information on this concept, see Relationships.

Relationships

One of the most important features of Graph databases lies in how they manage relationships. Many users come to OrientDB from

MongoDB due to OrientDB having more efficient support for relationships.

Relations in Relational Databases

Most database developers are familiar with the Relational model of databases and with relational database management systems, such as
MySQL and M S-SQL. Given its more than thirty years of dominance, this has long been thought the best way to handle relationships.

By contrast, Graph databases suggest a more modern ap proach to this concept.

Consider, as an example, a database where you need to establish relationships between customer and Address tables.

1-to-1 Relationship

Relational databases store the value of the target record in the address row of the customer table. This is the Foreign Key. The

foreign key points to the Primary Key of the related record in the Address table.

Consider a case where you want to view the address of a customer named Luca. In a Relational database, like My SQL, this is how you

would query the table:

mysql> SELECT B.location FROM Customer A, Address B

WHERE A.name='Luca' AND A.address=B.id;

What happens hereis a Join . That is, the contents of two tables are joined to form the results. The database executes the J0IN every

time you retrieve the relationship.

1-to-Many Relationship

Given that Relational databases have no concept of a collections, the customer table cannot have multiple foreign keys. The only way

to manage a 1-to-Many Relationship in databases of this kind is to move the Foreign Key to the Address table.

For example, consider a case where you want to return all addresses connected to the customer Luca, this is how you would query the
table:

mysql> SELECT B.location FROM Customer A, Address B

WHERE A.name='Luca' AND B.customer=A.id;

Many-to-Many relationship

The most complicated case is the M any-to-M any relationship. To handle associations of this kind, Relational databases require a
separate, intermediary table that matches rows from both customer and Address tables in all required combinations. This results in a

double JoIN per record at runtime.

For example, consider a case where you want to return all address for the customer Luca, this is how you would query the table:

mysql> SELECT C.location FROM Customer A, CustomerAddress B, Address C

WHERE A.name='Luca' AND B.id=A.id AND B.address=C.1id;

Understanding JOIN

In document and relational database systems, the more data that you have, the slower the database responds and JoIN operations have

a heavy runtime cost.

For relational database systems, the database computes the relationship every time you query the server. That translates to 0(log N /
block_size) . OrientDB handles relationships as physical links to the records and assigns them only once, when the edge is created.
That is, o(1) .

In OrientDB, the speed of traversal is not affected by the size of the database. It is always constant regardless of whether it has one

record or one hundred billion records. This is a critical feature in the age of Big Data.

Searching for an identifier at runtime each time you execute a query, for every record will grow very expensive. The first optimization
with relational databases is the use of indexing. Indexes speed up searches, but they slow down 1INSERT , UPDATE , and DELETE

operations. Additionally, they occupy a substantial amount of space on the disk and in memory.

Consider also whether searching an index is actually fast.

Indexes and JOIN

In the database industry, there are a number of indexing algorithms available. The most common in both relational and NoSQL database

systems is the B+ Tree.

Balance trees all work in a similar manner. For example, consider a case where you're looking for an entry with the name Luca : after

only five hops, the record is found.

While this is fine on a small database, consider what would happen if there were millions or billions of records. The database would have
to go through many, many more hops to find Luca . And, the database would execute this operation on every JoIN per record.

Picture: joining four tables with thousands of records. The number of JoIN operations could run in the millions.

Relations in OrientDB

There is no JoIn in OrientDB. Instead, it uses LINK . LINK is arelationship managed by storing the target Record ID in the source

record. It is similar to storing the pointer between two objects in memory.

When you have Invoice linked to customer , then you have a pointer to customer inside Invoice as an attribute. They are exactly

the same. In this way, it's as though your database was kept in memory: a memory of several exabytes.

Types of Relationships

In 1-to-N relationships, OrientDB handles the relationship as a collection of Record ID's, as you would when managing objects in

memory.
OrientDB supports several different kinds of relationships:

e LINK Relationship that points to one record only.

e LINKSET Relationship that points to several records. It is similar to Java sets, the same Record ID can only be included once. The
pointers have no order.

e LINKLIST Relationship that points to several records. It is similar to Java lists, they are ordered and can contain duplicates.

e LINkMAP Relationship that points to several records with a key stored in the source record. The M ap values are the Record ID's.

It is similar to Java Map<?,Record> .

http://en.wikipedia.org/wiki/B%2B_tree

SQL

Most NoSQL products employ a custom query language. In this, OrientDB differs by focusing on standards in query languages. That is,
instead of inventing "Yet Another Query Language," it begins with the widely used and well-understood language of SQL. It then

extends SQL to support more complex graphing concepts, such as Trees and Graphs.

Why SQL? Because SQL is ubiquitous in the database development world. It is familiar and more readable and concise than its

competitors, such as Map Reduce scripts or JSON based querying

SELECT

The seLecT statement queries the database and returns results that match the given parameters. For instance, earlier in Getting Started,
two queries were presented that gave the same results: BROWSE CLUSTER ouser and BROWSE CLASS Ouser . Here is a third option,

available through a seLECT statement.

orientdb> SELECT FrRoM oUser

Notice that the query has no projections. This means that you do not need to enter a character to indicate that the query should return

the entire record, such as the asterisk in the Relational model, (that is, SELECT * FRoM ouser).
Additionally, OUser is a class. By default, OrientDB executes queries against classes. Targets can also be:

e Clusters To execute against a cluster, rather than a class, prefix cLUSTER to the target name.

orientdb> SELECT FROM CLUSTER:Ouser

e Record ID To execute against one or more Record ID's, use the identifier(s) as your target. For example.

orientdb> SeLECT FRoM #

orientdb> SELECT FROM [#10:1, #10:30, #10:5]

e Indexes To execute a query against an index, prefix INDEX to the target name.

orientdb> SELECT VALUE FROM INDEX:dictionary WHERE key='Jay'

WHERE

Much like the standard implementation of SQL, OrientDB supports wHERE conditions to filter the returning records too. For example,

orientdb> SELECT FROM OUser WHERE name LIKE '1%'

This returns all ouser records where the name begins with 1 . For more information on supported operators and functions, see

WHERE .

ORDER BY

In addition to wHere , OrientDB also supports OoRDER BY clauses. This allows you to order the results returned by the query according

to one or more fields, in either ascending or descending order.

orientdb> SELECT FROM Employee WHERE city='Rome' ORDER BY surname ASC, name ASC

The example queries the Employee class, it returns a listing of all employees in that class who live in Rome and it orders the results by

surname and name, in ascending order.

GROUP BY

In the event that you need results of the query grouped together according to the values of certain fields, you can manage this using the

GROUP BY clause.

orientdb> sELECT suM(salary) FROM Employee WHERE age < 40 GROUP BY job

In the example, you query the Employee class for the sum of the salaries of all employees under the age of forty, grouped by their job
types.

LIMIT

In the event that your query returns too many results, making it difficult to read or manage, you can use the LIMIT clause to reduce it

to the top most of the return values.

orientdb> SELECT FROM Employee WHERE gender='male' LIMIT

In the example, you query the Employee class for a list of male employees. Given that there are likely to be a number of these, you

limit the return to the first twenty entries.

SKIP

When using the LiMIT clause with queries, you can only view the topmost of the return results. In the event that you would like to
view certain results further down the list, for instance the values from twenty to forty, you can paginate your results using the skip
keyword in the LiMIT clause.

orientdb> SELECT FROM Employee WHERE gender='male' LIMIT

orientdb> SseLECT FRoM Employee WHERE gender='male' SKIP 20 LIMIT

orientdb> SseLECT FRoM Employee WHERE gender='male' SKIP 40 LIMIT

The first query returns the first twenty results, the second returns the next twenty results, the third up to sixty. You can use these

queries to manage pages at the application layer.

INSERT

The 1nserT statement adds new data to a class and cluster. OrientDB supports three forms of syntax used to insert new data into your

database.

e The standard ANSI-93 syntax:

orientdb> INSERT INTO Employee(name, surname, gender)

VALUES('Jay', 'Miner', 'M")

e The simplified ANSI-92 syntax:

orientdb> INSERT INTO Employee SET name='Jay', surname='Miner', gender='M'

e The JSON syntax:

orientdb> INSERT INTO Employee CONTENT {name : 'Jay', surname : 'Miner',

gender : 'M'}

Each of these queries adds Jay Miner to the Employee class. You can choose whichever syntax that works best with your application.

UPDATE

The uppATE statement changes the values of existing data in a class and cluster. In OrientDB there are two forms of syntax used to

update data on your database.

e The standard ANSI-92 syntax:

orientdb> UPDATE Employee SET local= WHERE city='London'

e The JSON syntax, used with the MErGe keyword, which merges the changes with the current record:

orientdb> UPDATE Employee MERGE { local : } WHERE city='London'

Each of these statements updates the Employee class, changingthe local property to TRUE when the employee is based in London.

DELETE

The DELETE statement removes existing values from your class and cluster. OrientDB supports the standard ANSI-92 compliant
syntax for these statements:

orientdb> DELETE FROM Employee WHERE city <> 'London'

Here, entries are removed from the Employee class where the employee in question is not based in London.
See also:

e The SQL Reference

e The Console Command Reference

Working with Graphs

In graph databases, the database system graphs data into network-like structures consisting of vertices and edges. In the OrientDB
Graph model, the database represents data through the concept of a property graph, which defines a vertex as an entity linked with

other vertices and an edge, as an entity that links two vertices.
OrientDB ships with a generic vertex persistent class, called v , as well as a class for edges, called E . As an example, you can create a
new vertex using the InserT command with v .

orientdb> INSERT INTO V SET name='Jay'

Created record with RID #9:0

In effect, the Graph model database works on top of the underlying document model. But, in order to simplify this process, OrientDB

introduces a new set of commands for managing graphs from the console. Instead of INSERT , use CREATE VERTEX
orientdb> CREATE VERTEX V SET name='Jay'

Created vertex with RID #9:1

By using the graph commands over the standard SQL syntax, OrientDB ensures that your graphs remain consistent. For more

information on the particular commands, see the following pages:

e CREATE VERTEX
e DELETE VERTEX
e CREATE EDGE
e UPDATE EDGE
e DELETE EDGE

Use Case: Social Network for Restaurant Patrons
While you have the option of working with vertexes and edges in your database as they are, you can also extend the standard v and
E classes to suit the particular needs of your application. The advantages of this approach are,

e It grants better understanding about the meaning of these entities.
e It allows for optional constraints at the class level.
e It improves performance through better partitioning of entities.

e It allows for object-oriented inheritance among the graph elements.

For example, consider a social network based on restaurants. You need to start with a class for individual customers and another for the

restaurants they patronize. Create these classes to extend the v class.
orientdb> CREATE CLASS Person EXTENDS V

orientdb> CREATE CLASS Restaurant EXTENDS V

Doing this creates the schema for your social network. Now that the schema is ready, populate the graph with data.

orientdb> CREATE VERTEX Person SET name='Luca'

Created record with RID #11:0

orientdb> CREATE VERTEX Person SET name='Bill'

Created record with RID #11:1

orientdb> CREATE VERTEX Person SET name='Jay'

Created record with RID #11:2

orientdb> CREATE VERTEX Restaurant SET name='Dante', type='Pizza'

Created record with RID #12:0

orientdb> CREATE VERTEX Restaurant SET name='Charlie', type='French'

Created record with RID #12:1

This adds three vertices to the person class, representing individual users in the social network. It also adds two vertices to the

Restaurant class, representing the restaurants that they patronize.

Creating Edges

For the moment, these vertices are independent of one another, tied together only by the classes to which they belong. That is, they are

not yet connected by edges. Before you can make these connections, you first need to create a class that extends E .

orientdb> CREATE CLASS Eat EXTENDS E

This creates the class Eat , which extends the class E . Eat represents the relationship between the vertex person and the vertex

Restaurant .

When you create the edge from this class, note that the orientation of the vertices is important, because it gives the relationship its
meaning. For instance, creating an edge in the opposite direction, (from Restaurant to Person), would call for a separate class, such

as Attendee .

The user Luca eats at the pizza joint Dante. Create an edge that represents this connection:

orientdb> CREATE EDGE Eat FROM (SELECT FROM Person WHERE name='Luca')

TO (SELECT FROM Restaurant WHERE name='Dante')

Creating Edges from Record ID

In the event that you know the Record ID of the vertices, you can connect them directly with a shorter and faster command. For
example, the person Bill also eats at the restaurant Dante and the person Jay eats at the restaurant Charlie. Create edges in the class
Eat to represent these connections.

orientdb> CREATE EDGE Eat FROM #11:1 TO #

orientdb> CREATE EDGE Eat FROM #11:2 TO #

Querying Graphs

In the above example you created and populated a small graph of a social network of individual users and the restaurants at which they
eat. You can now begin to experiment with queries on a graph database.

To cross edges, you can use special graph functions, such as:

e out() To retrieve the adjacent outgoing vertices
e 1IN() To retrieve the adjacent incoming vertices

e BoTH() To retrieve the adjacent incoming and outgoing vertices

For example, to know all of the people who eat in the restaurant Dante, which has a Record ID of #12:0 , you can access the record for

that restaurant and traverse the incoming edges to discover which entries in the Person class connect to it.

orientdb> SELECT IN() FROM Restaurant WHERE name='Dante’

------- Boccocsoscooasooods
@RID | in |
------- occooooocooaoooods
#-2:1 | [#11:0, #11:1] |
------- occocsoocooasooods

This query displays the record ID's from the Person class that connect to the restaurant Dante. In cases such as this, you can use the

EXPAND() special function to transform the vertex collection in the result-set by expanding it.

orientdb> SELECT EXPAND(IN()) FROM Restaurant WHERE name='Dante'

------- T T T g
@RID | @CLASS | Name | out_Eat |
------- T T g
#11:0 | Person | Luca | #12:0
#11:1 | Person | Bill | #12:0
------- B T T T T T g

Creating Edge to Connect Users

Your application at this point shows connections between individual users and the restaurants they patronize. While this is interesting,

it does not yet function as a social network. To do so, you need to establish edges that connect the users to one another.

To begin, as before, create a new class that extends E :

orientdb> CREATE CLASS Friend EXTENDS E

The users Luca and Jay are friends. They have Record ID's of #11:0 and #11:2 . Create an edge that connects them.

orientdb> CREATE EDGE Friend FROM #11:0 TO #

In the Friend relationship, orientation is not important. That is, if Luca is a friend of Jay's then Jay is a friend of Luca's. Therefore,

you should use the BoTH() function.

orientdb> SELECT EXPAND(BOTH('Friend')) FROM Person WHERE name = 'Luca’

------- Pocooosonoonsoioosoosonosooaioosonosoadsossooosonods
@RID | @CLASS | Name | out_Eat | in_Friend |
------- Poccoosoooonsoioasoosonosoooioossnosoadsossooosonods
#11:2 | Person | Jay | #12:1 | #11:0

------- Pocooosooooosoioasoosonosooadoosonosoadsossooosonods

Here, the BoTH() function takes the edge class Friend as an argument, crossing only relationships of the Friend kind, (that is, it skips

the Eat class, at this time). Note in the result-set that the relationship with Luca, with a Record ID of #11:e inthe in_ field.

You can also now view all the restaurants patronized by friends of Luca.

orientdb> SELECT EXPAND(BOTH('Friend').out('Eat')) FROM Person

WHERE name='Luca'

------- Hoccoosoooooactioasooscnosooaioosonssoonoooinosoooood
@RID | @CLASS | Name | Type | in_Eat |
------- Hoccooscooonactioasoosonosooalooscnsoosnoooioccooood
#12:1 | Restaurant | Charlie | French | #11:2

------- Hoccoosoooooaciioasooscnosooalooscnscosnoooioocoooood

Lightweight Edges

In version 1.4.x, OrientDB begins to manage some edges as Lightweight Edges. Lightweight Edges do not have Record ID's, but are
physically stored as links within vertices. Note that OrientDB only uses a Lightweight Edge only when the edge has no properties,

otherwise it uses the standard Edge.

From the logic point of view, Lightweight Edges are Edges in all effects, so that all graph functions work with them. This is to improve

performance and reduce disk space.

Because Lightweight Edges don't exist as separate records in the database, some queries won't work as expected. For instance,

orientdb> SELECT FroM E

For most cases, an edge is used connecting vertices, so this query would not cause any problems in particular. But, it would not return
Lightweight Edges in the result-set. In the event that you need to query edges directly, including those with no properties, disable the
Lightweight Edge feature.

To disable the Lightweight Edge feature, execute the following command.

orientdb> ALTER DATABASE CUSTOM useLightweightEdges=

You only need to execute this command once. Orient DB now generates new edges as the standard Edge, rather than the Lightweight

Edge. Note that this does not affect existing edges.

For troubleshooting information on Lightweight Edges, see Why I can't see all the edges. For more information in the Graph model in

OrientDB, see Graph API.

Using Schema with Graphs
OrientDB, through the Graph API, offers a number of features above and beyond the traditional Graph Databases given that it supports

concepts drawn from both the Document Database and the Object Oriented worlds. For instance, consider the power of graphs, when

used in conjunction with schemas and constraints.

Use Case: Car Database

For this example, consider a graph database that maps the relationship between individual users and their cars. First, create the graph

schema for the person and car vertex classes, as well as the owns edge class to connect the two:
orientdb> CREATE CLASS Person EXTENDS V
orientdb> CREATE CLASS Car EXTENDS V

orientdb> CREATE CLASS Owns EXTENDS E

These commands lay out the schema for your graph database. That is, they define two vertex classes and an edge class to indicate the

relationship between the two. With that, you can begin to populate the database with vertices and edges.
orientdb> CREATE VERTEX Person SET name = 'Luca'

Created vertex 'Person#11l:0{name:Luca} vl' in 0,012000 sec(s).

orientdb> CREATE VERTEX Car SET name = 'Ferrari Modena'

Created vertex 'Car#12:0{name:Ferrari Modena} v1' in 0,001000 sec(s).

orientdb> CREATE EDGE Owns FROM (SELECT FROM Person) TO (SELECT FROM Car)

Created edge '[e[#11:0->#12:0][#11:0-0Owns->#12:0]]' in 0,005000 sec(s).

Querying the Car Database

In the above section, you create a car database and populated it with vertices and edges to map out the relationship between drivers and
their cars. Now you can begin to query this database, showing what those connections are. For example, what is Luca's car? You can find

out by traversing from the vertex Luca to the outgoing vertices following the owns relationship.

orientdb> SELECT name FROM (SELECT EXPAND(OUT('Owns')) FROM Person

WHERE name='Luca')

S S Hommmememeaamaooo +
| @RID | name

P S Fommmemmmaaamao oo +
O | #-2:1 | Ferrari Modena |
P S mmmimemmmaaamao oo +

As you can see, the query returns that Luca owns a Ferrari M odena. Now consider expanding your database to track where each person

lives.

Adding a Location Vertex

Consider a situation, in which you might want to keep track of the countries in which each person lives. In practice, there are a number
of reasons why you might want to do this, for instance, for the purposes of promotional material or in a larger database to analyze the

connections to see how residence affects car ownership.

To begin, create a vertex class for the country, in which the person lives and an edge class that connects the individual to the place.
orientdb> CREATE CLASS Country EXTENDS V

orientdb> CREATE CLASS Lives EXTENDS E

This creates the schema for the feature you're adding to the cars database. The vertex class country recording countries in which

people live and the edge class Lives to connect individuals in the vertex class Person to entries in Country .

With the schema laid out, create a vertex for the United Kingdom and connect it to the person Luca.
orientdb> CREATE VERTEX Country SET name='UK'

Created vertex 'Country#14:0{name:UK} v1' in 0,004000 sec(s).

orientdb> CREATE EDGE Lives FROM (SELECT FROM Person) TO (SELECT FROM Country)

Created edge '[e[#11:0->#14:0][#11:0-Lives->#14:0]]' in 0,006000 sec(s).

The second command creates an edge connecting the person Luca to the country United Kingdom. Now that your cars database is

defined and populated, you can query it, such as a search that shows the countries where there are users that own a Ferrari.

orientdb> SELECT name FROM (SELECT EXPAND(IN('Owns').OUT('Lives'))

FROM Car WHERE name LIKE '%Ferrari%')

[—— Fommmm oo - +
| @GRID | name |
[—— Fommmma oo +
0 | #-2:1 | UK |
[—— Fommmma oo +

Using in and out Constraints on Edges

In the above sections, you modeled the graph using a schema without any constraints, but you might find it useful to use some. For

instance, it would be good to require that an owns relationship only exist between the vertex person and the vertex car .
orientdb> CREATE PROPERTY Owns.out LINK Person

orientdb> CREATE PROPERTY Owns.in LINK Car

These commands link outgoing vertices of the person class to incoming vertices of the car class. That is, it configures your database

so that a user can own a Car, but a car cannot own a user.

Using MANDATORY Constraints on Edges

By default, when OrientDB creates an edge that lacks properties, it creates it as a Lightweight Edge. That is, it creates an edge that has
no physical record in the database. Using the MANDATORY setting, you can stop this behavior, forcing it to create the standard Edge,

without outright disabling Lightweight Edges.

orientdb> ALTER PROPERTY Owns.out MANDATORY

orientdb> ALTER PROPERTY Owns.in MANDATORY

Using UNIQUE with Edges

For the sake of simplicity, consider a case where you want to limit the way people are connected to cars to where the user can only
match to the car once. That is, if Luca owns a Ferrari M odena, y ou might prefer not to have a double entry for that car in the event that

he buys a new one a few years later. This is particularly important given that our database covers make and model, but not year.

To manage this, you need to define a unIQUE index against both the out and in properties.
orientdb> CREATE INDEX UniqueOwns ON Owns(out,in) UNIQUE

Created index successfully with 0 entries in 0,023000 sec(s).

The index returns tells us that no entries are indexed. You have already created the onws relationship between Luca and the Ferrari
Modena. In that case, however, OrientDB had created a Lightweight Edge before you set the rule to force the creation of documents for

owns instances. To fix this, you need to drop and recreate the edge.

orientdb> DELETE EDGE FROM #11:0 TO #
orientdb> CREATE EDGE Owns FROM (SELECT FROM Person) TO (SELECT FROM Car)

To confirm that this was successful, run a query to check that a record was created:

orientdb> SELECT FROM Owns

[—— Fommma oo Fommmmo oo +
| @GRID | out | in |
[— Fommma oo Fommmm oo +
0 | #13:0 | #11:0 | #12:0 |
[— L e, Fommmm oo +

This shows that a record was indeed created. To confirm that the constraints work, attempt to create an edge in owns that connects

Luca to the United Kingdom.
orientdb> CREATE EDGE Owns FROM (SELECT FROM Person) TO (SELECT FROM Country)

Error: com.orientechnologies.orient.core.exception.0CommandExecutionException:
Error on execution of command: sql.create edge Owns from (select from Person)...
Error: com.orientechnologies.orient.core.exception.0OValidationException: The
field 'Owns.in' has been declared as LINK of type 'Car' but the value is the
document #14:0 of class 'Country'

This shows that the constraints effectively blocked the creation, generating a set of errors to explain why it was blocked.

You now have a typed graph with constraints. For more information, see Graph Schema.

Setting up a Distributed Graph Database

In addition to the standard deployment architecture, where it runs as a single, standalone database instance, you can also deploy

OrientDB using Distributed Architecture. In this environment, it shares the database across multiple server instances.

Launching Distributed Server Cluster

There are two ways to share a database across multiple server nodes:
e Prior to startup, copy the specific database directory, under $ORIENTDB_HOME/database to all servers.

e Keep the database on the first running server node, then start every other server node. Under the default configurations, OrientDB

automatically shares the database with the new servers that join.
This tutorial assumes that you want to start a distributed database using the second method.

NOTE: When you run in distributed mode, OrientDB needs more RAM. The minimum is 2GB of heap, but we suggest to use at least 4GB

of heap memory. To change the heap modify the Java memory settings in the file bin/dserver.sh (or dserver.bat on Windows).

Starting the First Server Node

Unlike the standard standalone deployment of OrientDB, there is a different script that you need to use when launching a distributed
server instance. Instead of server.sh , youuse dserver.sh . In the case of Windows, use dserver.bat . Whichever you need, you can

find it in the bin of your installation directory.

$./bin/dserver.sh

Bear in mind that OrientDB uses the same orientdb-server-config.xml configuration file, regardless of whether it's running as a server

or distributed server. For more information, see Distributed Configuration.

The first time you start OrientDB as a distributed server, it generates the following output:

This is the first time that the server is running as
distributed. Please type the name you want to assign to the

To avoid this message set the environment variable or JVM

| |
| |
| current server node.
| |
| |
| setting ORIENTDB_NODE_NAME to the server node name to use. |

Node name [BLANK=auto generate it]:

You need to give the node a name here. OrientDB stores it in the nodeName parameter of OHazelcastPlugin . It adds the variable to

your orientdb-server-config.xml configuration file.

Distributed Startup Process

When OrientDB starts as a distributed server instance, it loads all databases in the database directory and configures them to run in
distributed mode. For this reason, the first load, OrientDB copies the default distributed configuration, (that is, the default-
distributed-db-config.json configuration file), into each database's directory, renaming it distributed-config.json . On subsequent
starts, each database uses this file instead of the default configuration file. Since the shape of the cluster changes every time nodes join or

leave, the configuration is kept up to date by each distributed server instance.

For more information on working with the default-distributed-db-config.json configuration file, see Distributed Configuration.

Starting Additional Server Nodes

When you have the first server node running, you can begin to start the other server nodes. Each server requires the same Hazelcast

credentials in order to join the same cluster. You can define these in the hazelcast.xml configuration file.

The fastest way to initialize multiple server nodes is to copy the OrientDB installation directory from the first node to each of the

subsequent nodes. For instance,

$ scp user@ip_address $ORIENTDB HOME

This copies both the databases and their configuration files onto the new distributed server node.

Bear in mind, if you run multiple server instances on the same host, such as when testing, you need to change the port entry in

the hazelcast.xml configuration file.

For the other server nodes in the cluster, use the same dserver.sh command as you used in starting the first node. When the other
server nodes come online, they begin to establish network connectivity with each other. M onitoring the logs, you can see where they

establish connections from messages such as this:

WARN [node1384014656983] added new node id=Member [192.168.1.179]:2435 name=null
[OHazelcastPlugin]

INFO [192.168.1.179]:2434 [orientdb] Re-partitioning cluster data... Migration
queue size: 135 [PartitionService]

INFO [192.168.1.179]:2434 [orientdb] All migration tasks has been completed,
queues are empty. [PartitionService]

INFO [node1384014656983] added node configuration id=Member [192.168.1.179]:2435
name=node1384015873680, now 2 nodes are configured [OHazelcastPlugin]

INFO [nodel1384014656983] update configuration db=GratefulDeadConcerts
from=node1384015873680 [OHazelcastPlugin]

WARN [node1383734730415]->[node1384015873680] deploying database
GratefulDeadConcerts...[0ODeployDatabaseTask]

WARN [nodel1383734730415]->[node1384015873680] sending the compressed database
GratefulDeadConcerts over the network, total 339,66Kb [0ODeployDatabaseTask]

In the example, two server nodes were started on the same machine. It has an IP address of 10.37.129.2, but is using OrientDB on two
different ports: 2434 and 2435, where the current is called this . The remainder of the log is relative to the distribution of the database

to the second server.

On the second server node output, OrientDB dumps messages like this:

WARN [node1384015873680]<- [node1383734730415] installing database
GratefulDeadConcerts in databases/GratefulDeadConcerts... [OHazelcastPlugin]

WARN [nodel1384015873680] installed database GratefulDeadConcerts in
databases/GratefulDeadConcerts, setting it online... [OHazelcastPlugin]

WARN [node1384015873680] database GratefulDeadConcerts is online [OHazelcastPlugin]

WARN [node1384015873680] updated node status to 'ONLINE' [OHazelcastPlugin]

INFO OrientDB Server v2.2.11-SNAPSHOT is active. [OServer]

What these messages mean is that the database GratefulbeadConcerts was correctly installed from the first node, that is

node1383734730415 through the network.

Migrating from standalone server to a cluster

If you have a standalone instance of OrientDB and you want to move to a cluster you should follow these steps:

Install OrientDB on all the servers of the cluster and configure it (according to the sections above)

Stop the standalone server

Copy the specific database directories under $ORIENTDB_HOME/database to all the servers of the cluster

Start all the servers in the cluster using the script dserver.sh (or dserver.bat if on Windows)

If the standalone server will be part of the cluster, you can use the existing installation of OrientDB; you don't need to copy the

database directories since they 're already in place and you just have to start it before all the other servers with dserver.sh .

Working with Distributed Graphs

When OrientDB joins a distributed cluster, all clients connecting to the server node are constantly notified about this state. This ensures

that, in the event that server node fails, the clients can switch transparently to the next available server.

You can check this through the console. When OrientDB runs in a distributed configuration, the current cluster shape is visible through

the INFO command.
$ SORIENTDB HOME/bin/console.sh
OrientDB console v.1.6 www.orientechnologies.com
Type 'help' to display all the commands supported.
Installing extensions for GREMLIN language Vv.2.5.0-SNAPSHOT

orientdb> CONNECT remote:localhost/GratefulDeadConcerts admin admin

Connecting to database [remote:localhost/GratefulDeadConcerts] with user 'admin'...OK

orientdb> 1nFo

Current database: GratefulDeadConcerts (url=remote:localhost/GratefulDeadConcerts)

For reference purposes, the server nodes in the example have the following configurations. As you can see, it is a two node cluster

running a single server host. The first node listens on port 2481 while the second on port 2480 .

oo ommme- Ao e Femmme o R EEELEEEEE o o
-+
|Name |Status|Databases |Conns |StartedoOn|Binary |HTTP |UsedMemory

|
dommmeee ommme- o e Feammme Fommmeeas o o o
-+
|europe-© |ONLINE|distributed-node-deadlock=ONLINE (MASTER) | |16:53: | : | : | MB/ GB (
%)
|europe-1 |ONLINE|distributed-node-deadlock=ONLINE (MASTER) | |16:54: | : | : | MB/ GB (
%) |
Hommmmeeen ommme- o e Feommm- Fommmeeas O ELETEEEEE o o

Testing Distributed Architecture

Once you have a distributed database up and running, you can begin to test its operations on a running environment. For example, begin

by creating a vertex, setting the node property to 1 .
orientdb> CREATE VERTEX V SET node =

Created vertex 'V#9:815{node:1} v1' in 0,013000 sec(s).

From another console, connect to the second node and execute the following command:

orinetdb> SELECT FROM V WHERE node =

sosodocoacoos Pocoocoo +
| @RID | node |
sosodocoacoos Poccocos +
© | #9:815 | 1 |
sosodocoacoos Poccocos +

1 item(s) found. Query executed in 0.19 sec(s).

This shows that the vertex created on the first node has successfully replicated to the second node.

Logs in Distributed Architecture

From time to time server nodes go down. This does not necessarily relate to problems in OrientDB, (for instance, it could originate from

limitations in sy stem resources).

To test this out, kill the first node. For example, assuming the first node has a process identifier, (that is, a PID), of 1254 on your

system, run the following command:

$ -9 1254

This command kills the process on PID 1254 . Now, check the log messages for the second node:
$ less orientdb.log

INFO [127.0.0.1]:2435 [orientdb] Removing Member [127.0.0.1]:2434
[ClusterService]

INFO [127.0.0.1]:2435 [orientdb]

Members [1] {
Member [1: this

}
[ClusterService]
WARN [europe-0] node removed id=Member [127.0.0.1]:2434
name=europe-1 [OHazelcastPlugin]
INFO [127.0.0.1]:2435 [orientdb] Partition balance is ok, no need to
re-partition cluster data... [PartitionService]

What the logs show you is that the second node is now aware that it cannot reach the first node. You can further test this by running the

console connected to the first node..
orientdb> SELECT FROM V LIMIT

WARN Caught I/0 errors from /127.0.0.1:2425 (local
socket=0.0.0.0/0.0.0.0:51512), trying to reconnect (error:
java.io.IOException: Stream closed) [OStorageRemote]

WARN Connection re-acquired transparently after 30ms and 1 retries: no errors
will be thrown at application level [0StorageRemote]

R B temmmmmm- e +--o--- S +---a-
| @RID | name | song_type | performances | type | out_followed_by |

R B temmmmm-- e +--o--- e +---a-
1 | #9:1 | HEY BO DIDDLEY | cover | 5 | song | [5]

2 | #9:2 | IM A MAN | cover | 1 | song | [2]

This shows that the console auto-switched to the next available node. That is, it switched to the second node upon noticing that the first
was no longer functional. The warnings reports show what happened in a transparent way, so that the application doesn't need to

manage the issue.

From the console connected to the second node, create a new vertex.
orientdb> CREATE VERTEX V SET node=

Created vertex 'V#9:816{node:2} v1i' in 0,014000 sec(s).

Given that the first node remains nonfunctional, OrientDB journals the operation. Once the first node comes back online, the second

node synchronizes the changes into it.

Restart the first node and check that it successfully auto-realigns. Reconnect the console to the first node and run the following

command:

orientdb> SELECT FROM V WHERE node=

coodbococooooo Pocooooo +
| @RID | node |
coodbococooooo Pocooooo +
0 | #9:816 | 2 |
e —— [e, +

1 item(s) found. Query executed in 0.209 sec(s).

This shows that the first node has realigned itself with the second node.

This process is repeatable with N server nodes, where every server is a master. There is no limit to the number of running servers. With

many servers spread across a slow network, you can tune the network timeouts to be more permissive and let a large, distributed cluster

of servers work properly.

For more information, Distributed Architecture.

Multi-Model

The OrientDB engine supports Graph, Document, Key/Value, and Object models, so you can use OrientDB as a replacement for a
product in any of these categories. However, the main reason why users choose OrientDB is because of its true Multi-Model DBM S
abilities, which combine all the features of the four models into the core. These abilities are not just interfaces to the database engine, but
rather the engine itself was built to support all four models. This is also the main difference to other multi-model DBM Ss, as they
implement an additional layer with an API, which mimics additional models. However, under the hood, they're truly only one model,

therefore they are limited in speed and scalability.

The Document Model

The data in this model is stored inside documents. A document is a set of key/value pairs (also referred to as fields or properties), where
the key allows access to its value. Values can hold primitive data types, embedded documents, or arrays of other values. Documents are
not typically forced to have a schema, which can be advantageous, because they remain flexible and easy to modify. Documents are
stored in collections, enabling developers to group data as they decide. OrientDB uses the concepts of "classes" and "clusters" as its
form of "collections" for grouping documents. This provides several benefits, which we will discuss in further sections of the

documentation.

OrientDB's Document model also adds the concept of a "LLINK" as a relationship between documents. With OrientDB, you can decide
whether to embed documents or link to them directly. When you fetch a document, all the links are automatically resolved by OrientDB.
This is a major difference to other Document Databases, like M ongoDB or CouchDB, where the developer must handle any and all

relationships between the documents herself.

The table below illustrates the comparison between the relational model, the document model, and the OrientDB document model:

Relational Model Document Model OrientDB Document Model
Table Collection Class or Cluster
Row Document Document
Column Key/value pair Document field
Relationship not available Link

The Graph Model

A graph represents a network-like structure consisting of Vertices (also known as Nodes) interconnected by Edges (also known as Arcs).

OrientDB's graph model is represented by the concept of a property graph, which defines the following:
e Vertex - an entity that can be linked with other Vertices and has the following mandatory properties:

o unique identifier
o set of incoming Edges
o set of outgoing Edges

e Edge - an entity that links two Vertices and has the following mandatory properties:

o unique identifier

[e]

link to an incoming Vertex (also known as head)

[e]

link to an outgoing Vertex (also known as tail)

[e]

label that defines the type of connection/relationship between head and tail vertex

In addition to mandatory properties, each vertex or edge can also hold a set of custom properties. These properties can be defined by
users, which can make vertices and edges appear similar to documents. In the table below, you can find a comparison between the graph

model, the relational data model, and the OrientDB graph model:

Relational Model Graph Model OrientDB Graph Model

Table Vertex and Edge Class Class that extends "V" (for Vertex) and "E" (for Edges)
Row Vertex Vertex

Column Vertex and Edge property Vertex and Edge property

Relationship Edge Edge

The Key/Value Model

This is the simplest model of the three. Everything in the database can be reached by a key, where the values can be simple and complex
types. OrientDB supports Documents and Graph Elements as values allowing for a richer model, than what you would normally find in
the classic Key/Value model. The classic Key/Value model provides "buckets" to group key/value pairs in different containers. The most

classic use cases of the Key/Value M odel are:

e POST the value as payload of the HTTP call -> /<bucket>/<key>
e GET the value as payload from the HTTP call -> /<bucket>/<key>
e DELETE the value by Key, by calling the HTTP call -> /<bucket>/<key>

The table below illustrates the comparison between the relational model, the Key/Value model, and the OrientDB Key/Value model:

Relational Model Key/Value Model OrientDB Key/Value Model
Table Bucket Class or Cluster
Row Key/Value pair Document
Column not available Document field or Vertex/Edge property
Relationship not available Link

The Object Model

This model has been inherited by Object Oriented programming and supports Inheritance between types (sub-types extends the

super-types), Polymorphism when you refer to a base class and Direct binding from/to Objects used in programming languages.

The table below illustrates the comparison between the relational model, the Object model, and the OrientDB Object model:

Relational Model Object Model OrientDB Object Model
Table Class Class or Cluster
Row Object Document or Vertex
Column Object property Document field or Vertex/Edge property

Relationship Pointer Link

http://en.wikipedia.org/wiki/Object-oriented_programming

Basic Concepts

Record

The smallest unit that you can load from and store in the database. Records come in four types:

e Document
e RecordBytes
o Vertex

e FEdge

A Record is the smallest unit that can be loaded from and stored into the database. A record can be a Document, a RecordBytes record

(BLOB) a Vertex or even an Edge.

Document

The Document is the most flexible record type available in OrientDB. Documents are softly typed and are defined by schema classes

with defined constraints, but you can also use them in a schema-less mode too.

Documents handle fields in a flexible manner. You can easily import and export them in JSON format. For example,

{
"name" : "Jay",
"surname" : "Miner",
"job" : "Developer",
"creations" : [
{
"name" : "Amiga 1000",
"company" : "Commodore Inc."
Ao
"name" : "Amiga 500",
"company" : "Commodore Inc."
}
]
}

For Documents, OrientDB also supports complex relationships. From the perspective of developers, this can be understood as a

persistent Map<String,Object> .

BLOB

In addition to the Document record type, OrientDB can also load and store binary data. The BLOB record type was called
RecordBytes before OrientDB v2.2.

Vertex

In Graph databases, the most basic unit of data is the node, which in OrientDB is called a vertex. The Vertex stores information for the

database. There is a separate record type called the Edge that connects one vertex to another.

Vertices are also documents. This means they can contain embedded records and arbitrary properties.

Edge

In Graph databases, an arc is the connection between two nodes, which in OrientDB is called an edge. Edges are bidirectional and can

only connect two vertices.

Edges can be regular or lightweight. The Regular Edge saves as a Document, while the Lightweight Edge does not. For an understanding

of the differences between these, see Lightweight Edges.

For more information on connecting vertices in general, see Relationships, below.

Record ID

When OrientDB generates a record, it auto-assigns a unique unit identifier, called a Record ID, or RID. The syntax for the Record ID is

the pound sign with the cluster identifier and the position. The format is like this:
#<cluster>:<position> .

e Cluster Identifier: This number indicates the cluster to which the record belongs. Positive numbers in the cluster identifier
indicate persistent records. Negative numbers indicate temp orary records, such as those that appear in result-sets for queries that

use projections.
e Position: This number defines the absolute position of the record in the cluster.
NOTE: The prefix character # is mandatory to recognize a Record ID.

Records never lose their identifiers unless they are deleted. When deleted, OrientDB never recycles identifiers, except with local
storage. Additionally, you can access records directly through their Record ID's. For this reason, you don't need to create a field to serve

as the primary key, as you do in Relational databases.

Record Version

Records maintain their own version number, which increments on each update. In optimistic transactions, OrientDB checks the version

in order to avoid conflicts at commit time.

Class

The concept of the Class is taken from the Object Oriented Programming paradigm. In OrientDB, classes define records. It is closest to

the concept of a table in Relational databases.

Classes can be schema-less, schema-full or a mix. They can inherit from other classes, creating a tree of classes. Inheritance, in this

context, means that a sub-class extends a parent class, inheriting all of its attributes.

Each class has its own cluster. A class must have at least one cluster defined, which functions as its default cluster. But, a class can
support multiple clusters. When you execute a query against a class, it automatically propagates to all clusters that are part of the class.

When you create a new record, OrientDB selects the cluster to store it in using a configurable strategy.

When you create a new class, by default, OrientDB creates a new persistent cluster with the same name as the class, in lowercase.

Abstract Class

The concept of an Abstract Class is one familiar to Object-Oriented programming, In OrientDB, this feature has been available since
version 1.2.0. Abstract classes are classes used as the foundation for defining other classes. They are also classes that cannot have

instances. For more information on how to create an abstract class, see CREATE CLASS.
This concept is essential to Object Orientation, without the typical spamming of the database with always empty, auto-created clusters.

For more information on Abstract Class as a concept, see Abstract Type and Abstract M ethods and Classes

Class vs. Cluster in Queries

The combination of classes and clusters is very powerful and has a number of use cases. Consider an examp le where you create a class

Invoice , with two clusters invoice2016 and invoice2017 . You can query all invoices using the class as a target with SeLECT .

orientdb> SELECT FrROM Invoice

In addition to this, you can filter the result-set by year. The class Invoice includes a year field, you can filter it through the wHere

clause.

orientdb> SELECT FROM Invoice WHERE year =

http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Inheritance_%28object-oriented_programming%29
http://en.wikipedia.org/wiki/Abstract_type
http://docs.oracle.com/javase/tutorial/java/IandI/abstract.html

You can also query specific objects from a single cluster. By splitting the class Invoice across multiple clusters, (that is, one per year),

you can optimize the query by narrowing the potential result-set.

orientdb> SELECT FROM CLUSTER:invoice2016

Due to the optimization, this query runs significantly faster, because OrientDB can narrow the search to the targeted cluster.

Cluster

Where classes in provide you with a logical framework for organizing data, clusters provide physical or in-memory space in which

OrientDB actually stores the data. It is comparable to the collection in Document databases and the table in Relational databases.

When you create a new class, the CREATE cLASS process also creates a physical cluster that serves as the default location in which to
store data for that class. OrientDB forms the cluster name using the class name, with all lower case letters. Beginning with version 2.2,

OrientDB creates additional clusters for each class, (one for each CPU core on the server), to improve performance of parallelism.

For more information, see the Clusters Tutorial.

Relationships

OrientDB supports two kinds of relationships: referenced and embedded. It can manage relationships in a schema-full or schema-less

scenario.

Referenced Relationships

In Relational databases, tables are linked through JoIN commands, which can prove costly on computing resources. OrientDB manges
relationships natively without computing JoIn 's. Instead, it stores direct links to the target objects of the relationship. This boosts the

load speed for the entire graph of connected objects, such as in Graph and Object database sy stems.

For examp le
customer
Record A ------------- > Record B
CLASS=Invoice CLASS=Customer
RID=5:23 RID=10:2

Here, record A contains the reference to record B in the property customer . Note that both records are reachable by other records,

given that they have a Record ID.

With the Graph API, Edges are represented with two links stored on both vertices to handle the bidirectional relationship.

1:1 and n:1 Referenced Relationships

OrientDB expresses relationships of these kinds using links of the LINK type.

1:n and n:n Referenced Relationships

OrientDB expresses relationships of these kinds using a collection of links, such as:

e LINKLIST An ordered list of links.
e LINKSET An unordered set of links, which does not accept duplicates.

e LINKMAP An ordered map of links, with string as the key type. Duplicates keys are not accepted.

With the Graph API, Edges connect only two vertices. This means that 1:n relationships are not allowed. To specify a 1:n relationship
with graphs, create multiple edges.

Embedded Relationships

When using Embedded relationships, OrientDB stores the relationship within the record that embeds it. These relationships are stronger

than Reference relationships. You can represent it as a UM L Composition relationship.

Embedded records do not have their own Record ID, given that you can't directly reference it through other records. It is only accessible

through the container record.

In the event that you delete the container record, the embedded record is also deleted. For example,

address
Record A S T > Record B
CLASS=Account CLASS=Address
RID=5:23 NO RID!

Here, record A contains the entirety of record B in the property address . You can reach record B only by traversing the container

record. For example,

orientdb> SELECT FROM Account WHERE address.city = 'Rome’

1:1 and n:1 Embedded Relationships

OrientDB expresses relationships of these kinds using the EMBEDDED type.

1:n and n:n Embedded Relationships
OrientDB expresses relationships of these kinds using a collection of links, such as:

e EMBEDDEDLIST An ordered list of records.
e EMBEDDEDSET An unordered set of records, that doesn't accept duplicates.

e EMBEDDEDMAP An ordered map of records as the value and a string as the key, it doesn't accept duplicate keys.

Inverse Relationships

In OrientDB, all Edges in the Graph model are bidirectional. This differs from the Document model, where relationships are always
unidirectional, requiring the developer to maintain data integrity. In addition, OrientDB automatically maintains the consistency of all

bidirectional relationships.

Database

The database is an interface to access the real Storage. IT understands high-level concepts such as queries, schemas, metadata, indices

and so on. OrientDB also provides multiple database types. For more information on these types, see Database Types.

Each server or Java VM can handle multiple database instances, but the database name must be unique. You can't manage two databases
at the same time, even if they are in different directories. To handle this case, use the $ dollar character as a separator instead of the
/ slash character. OrientDB binds the entire name, so it becomes unique, but at the file system level it converts $ with / , allowing

multiple databases with the same name in different paths. For example,

test$customers -> test/customers
production$customers = production/customers

To open the database, use the following code:

test = new ODatabaseDocumentTx('remote:localhost/test$customers™);
production = new ODatabaseDocumentTx("remote:localhost/production$customers™);

Database URL

OrientDB uses its own URL format, of engine and database name as <engine>:<db-name> .

http://en.wikipedia.org/wiki/Class_diagram#Composition
http://en.wikipedia.org/wiki/Uniform_Resource_Locator

Engine Description Example

This engine writes to the file system to store data. There is a LOG

plocal N plocal:/temp/databases/petshop/petshop
of changes to restore the storage in case of a crash.

memory Open a database completely in memory memory : petshop
The storage will be opened via a remote network connection. It

remote requires an OrientDB Server up and running, In this mode, the remote: localhost/petshop
database is shared among multiple clients. Syntax: remote:<server>:
[<port>]/db-name . The port is optional and defaults to 2424.

Database Usage

You must always close the database once you finish working on it.

NOTE: OrientDB automatically closes all opened databases, when the process dies gracefully (not by killing it by force). This is

assured if the Operating System allows a graceful shutdown.

Supported Types

OrientDB supports several types natively. Below is the complete table.

#id

10

11

12

13

14

Type

Boolean

Integer

Short

Long

Float

Double

Datetime

String

Binary

Embedded

Embedded
list

Embedded
set

Embedded
map

Link

Link list

Description

Handles only the values True or
False

32-bit signed Integers

Small 16-bit signed integers

Big 64-bit signed integers

Decimal numbers

Decimal numbers with high
precision

Any date with the precision up to
milliseconds. To know more about
it, look at M anaging Dates

Any string as alphanumeric
sequence of chars

Can contain any value as byte array

The Record is contained inside the
owner. The contained Record has
no Record ID

The Records are contained inside
the owner. The contained records
have no Record ID's and are
reachable only by navigating the
owner record

The Records are contained inside
the owner. The contained Records
have no Record ID and are
reachable only by navigating the
owner record

The Records are contained inside
the owner as values of the entries,
while the keys can only be Strings.
The contained ords e no Record
IDs and are reachable only by
navigating the owner Record

Link to another Record. It's a
common one-to-one relationship

Links to other Records. It's a
common one-to-many relationship
where only the Record IDs are
stored

Links to other Records. It's a

Java type

java.lang.Boolean Or
boolean

java.lang.Integer Or
int

java.lang.Short oOr
short

java.lang.Long Or
long

java.lang.Float oOr
float

java.lang.Double oOr
double

java.util.Date

java.lang.String

byte[]

ORecord

List<Object>

Set<Object>

Map<String, ORecord>

ORID , <? extends
ORecord>

List<? extends
ORecord

Minimum
Maximum

-2,147,483,648
+2,147,483,647

-32,768
32,767

63
-2
+263-1

-149

2
234,127

(2-2

-1074
(2275241023

1002020303

0
2,147,483,647

0
41,000,000
items

0
41,000,000
items

0
41,000,000
items

1:-1
32767:2A63-1

0
41,000,000
items

Auto-
conversion
from/to

String

Any
Number,
String

Any
Number,
String
Any
Number,
String
Any
Number,
String
Any

Number,
String

Date, Long,
String

String

ORecord

String

String

Collection<?
extends

ORecord<?>> |
String

String

String

Collection<?

15

16

17

18

19

20

21

22

23

Link set

Link map

Byte

Transient

Date

Custom

Decimal

LinkBag

Any

Links to other Records. It's a
common one-to-many relationship

Links to other Records as value of
the entries, while keys can only be
Strings. It's a common One-to-
Many Relationship. Only the
Record IDs are stored

Single byte. Useful to store small 8-
bit signed integers

Any value not stored on database

Any date as year, month and day.
To know more about it, look at
M anaging Dates

used to store a custom type

providing the marshall and
unmarshall methods

Decimal numbers without rounding

List of Record IDs as spec RidBag

Not determinated type, used to
specify Collections of mixed type,
and null

Set<? extends
ORecord>

Map<String, ?
extends Record>

java.lang.Byte oOr
byte

java.util.Date

OSerializableStream

java.math.BigDecimal

ORidBag

41,000,000
items

0
41,000,000
items

-128
+127

o

extends

ORecord> ,
String

String

Any
Number,
String

Date, Long,
String

Any
Number,
String

Inheritance

Unlike many Object-relational mapping tools, OrientDB does not split documents between different classes. Each document resides in
one or a number of clusters associated with its specific class. When you execute a query against a class that has subclasses, OrientDB

searches the clusters of the target class and all subclasses.

Declaring Inheritance in Schema

In developing your application, bear in mind that OrientDB needs to know the class inheritance relationship. This is an abstract concept
that applies to both POJO's and Documents.

For example,

OClass account = database.getMetadata().getSchema().createClass("Account");
OClass company = database.getMetadata().getSchema().createClass("Company").setSuperClass(account);

Using Polymorphic Queries
By default, OrientDB treats all queries as polymorphic. Using the example above, you can run the following query from the console:

orientdb> SELECT FROM Account WHERE name.toUpperCase() = 'GOOGLE'

This query returns all instances of the classes Account and company that have a property name that matches Google .

How Inheritance Works

Consider an example, where you have three classes, listed here with the cluster identifier in the parentheses.

Account(10) <|--- Company (13) <|--- OrientTechnologiesGroup (27)

By default, OrientDB creates a separate cluster for each class. It indicates this cluster by the defaultclusterid property in the class
oclass and indicates the cluster used by default when not specified. However, the class oclass has a property clusterids , (as
int[]), that contains all the clusters able to contain the records of that class. clusterids and defaultClusterId are the same by

default.

When you execute a query against a class, OrientDB limits the result-sets to only the records of the clusters contained in the

clusterIds property. For example,

orientdb> SELECT FROM Account WHERE name.toUpperCase() = 'GOOGLE'

This query returns all the records with the name property set to GoocLE from all three classes, given that the base class Account was
specified. For the class Account , OrientDB searches inside the clusters 10 , 13 and 27 , following the inheritance specified in the

schema.

Concurrency

OrientDB uses an optimistic approach to concurrency. Optimistic Concurrency Control, or OCC assumes that multiple transactions can
compete frequently without interfering with each other. It's very important that you don't share instances of databases, graphs, records,

documents, vertices and edges between threads because they are non thread-safe. For more information look at M ulti-Threading,

How does it work?

Consider the following scenario, where 2 clients, A and B, want to update the amount of a bank account:

Client A Client B
| |
(t1) |
Read record #13:22
amount is 100 (t2)
| Read record #13:22
(t3) amount is 100
Update record #13:22
set amount = amount + 10 (t4)

| Update record #13:22

set amount = amount + 10

Client A (t1) and B (t2) read the record #13:22 and both receive the last amount as USD 100. Client A updates the amount by adding
USD 10 (t3), then the Client B is trying to do the same thing: updates the amount by adding USD 10. Here is the problem: Client B is
doing an operation based on current information: the amount was USD 100. But at the moment of update, such information is changed
(by Client A on t3), so the amount is USD 110 in the database. Should the update succeed by setting the new amount to USD 120?

In some cases this could be totally fine, in others not. It depends by the use case. For example, in your application there could be a logic
where you are donating USD 10 to all the accounts where the amount is <=100. The owner of the account behind the record #13:22 is

more lucky than the others, because it receives the donation even if it has USD 110 at that moment.

For this reason in OrientDB when this situation happens a oconcurrentModificationException exception is thrown, so the application

can manage it properly. Usually the 3 most common strategies to handle this exceptions are:

1. Retry doing the same operation by reloading the record #13:22 first with the updated amount
2. Ignore the change, because the basic condition is changed

3. Propagate the exception to the user, so he can decide what to do in this case

Optimistic Concurrency in OrientDB

Optimistic concurrency control is used in environments with low data contention. That is, where conflicts are rare and transactions can
complete without the expense of managing locks and without having transactions wait for locks to clear. This means an increased

throughput over other concurrency control methods.

OrientDB uses OCC for both Atomic Operations and Transactions.

Atomic Operations

OrientDB supports Multi-Version Concurrency Control, or M VCC, with atomic operations. This allows it to avoid locking server side
resources. At the same time, it checks the version in the database. If the version is equal to the record version contained in the operation,
the operation is successful. If the version found is higher than the record version contained in the operation, then another thread or user

has already updated the same record. In this case, OrientDB generates an ocConcurrentModificationException exception.

Given that behavior of this kind is normal on systems that use optimistic concurrency control, developers need to write concurrency-
proof code. Under this design, the application retries transactions x times before reporting the error. It does this by catching the

exception, reloading the affected records and attempting to update them again. For example, consider the code for saving a document,

http://en.wikipedia.org/wiki/Optimistic_concurrency_control
http://en.wikipedia.org/wiki/Multiversion_concurrency_control

int maxRetries = 2
List<ODocument> result = db.query("SELECT FROM Client WHERE id = '39w39D32d2d'");
ODocument address = result.get(0);

for (int retry = 0; retry < maxRetries; ++retry) {

try {
// LOOKUP FOR THE INVOICE VERTEX

address.field("street", street);
address.field("zip", zip);
address.field("city", cityName);
address.field("country", countryName);

address.save();

// EXIT FROM RETRY LOOP
break;

}

catch(ONeedRetryException e) {
// IF SOMEONE UPDATES THE ADDRESS DOCUMENT
// AT THE SAME TIME, RETRY IT.

Transactions

OrientDB supports optimistic transactions. The database does not use locks when transactions are running, but when the transaction
commits, each record (document or graph element) version is checked to see if there have been updates from another client. For this

reason, you need to code your applications to be concurrency-proof.

Optimistic concurrency requires that you retry the transaction in the event of conflicts. For example, consider a case where you want to

connect a new vertex to an existing vertex:

int maxRetries = 10;
for (int retry = 0; retry < maxRetries; ++retry) {
try {
// LOOKUP FOR THE INVOICE VERTEX
Vertex invoice = graph.getVertices("invoiceId",);

// CREATE A NEW ITEM
Vertex invoiceItem = graph.addVertex('class:InvoiceItem");
invoiceItem.field("price",)

// ADD IT TO THE INVOICE
invoice.addEdge(invoiceItem);

graph.commit();

// EXIT FROM RETRY LOOP
break;

}

catch(OConcurrentModificationException e) {
// SOMEONE HAS UPDATED THE INVOICE VERTEX
// AT THE SAME TIME, RETRY IT

Concurrency Level

In order to guarantee atomicity and consistency, OrientDB uses an exclusive lock on the storage during transaction commits. This means

that transactions are serialized.

Given this limitation, developers with OrientDB are working on improving parallelism to achieve better scalability on multi-core

machines, by optimizing internal structure to avoid exclusive locking.

Concurrency when Adding Edges

Consider the case where multiple clients attempt to add edges on the same vertex. OrientDB could throw the
oconcurrentModificationException exception. This occurs because collections of edges are kept on vertices, meaning that, every time
OrientDB adds or removes an edge, both vertices update and their versions increment. You can avoid this issue by using RIDBAG

Bonsai structure, which are never embedded, so the edge never updates the vertices.

To use this configuration at run-time, before launching OrientDB, use this code:

OGlobalConfiguration.RID_BAG_EMBEDDED_TO_SBTREEBONSAI_THRESHOLD.setValue(-1);

Alternatively, you can set a parameter for the Java virtual-machine on startup, or even at run-time, before OrientDB is used:

$ java -DridBag.embeddedToSbtreeBonsaiThreshold=-1

While running in distributed mode SBTrees are not supported. If using a distributed database
then you must set

ridBag.embeddedToSbtreeBonsaiThreshold = Integer.MAX_VALUE

to avoid replication errors.

Troubleshooting

Reduce Transaction Size

On occasion, OrientDB throws the oconcurrentModificationException exception even when you concurrently update the first element.
In particularly large transactions, where you have thousands of records involved in a transaction, one changed record is enough to roll the

entire process back with an oconcurrentModificationException exception.

To avoid issues of this kind, if you plan to update many elements in the same transaction with high-concurrency on the same vertices, a

best practice is to reduce the transaction size.

Schema
While OrientDb can work in a schema-less mode, you may find it necessary at times to enforce a schema on your data model. OrientDB
supports both schema-full and schema-hybrid solutions.

In the case of schema-hybrid mode, you only set constraints for certain fields and leave the user to add custom fields to the record. This
mode occurs at a class level, meaning that you can have an Employee class as schema-full and an EmployeeInformation class as schema-

less.

e Schema-full Enables strict-mode at a class-level and sets all fields as mandatory.
e Schema-less Enables classes with no properties. Default is non-strict-mode, meaning that records can have arbitrary fields.
e Schema-hybrid Enables classes with some fields, but allows records to define custom fields. This is also sometimes called schema-

mixed.
NOTE Changes to the schema are not transactional. You must execute these commands outside of a transaction.

You can access the schema through SQL or through the Java API. Examples here use the latter. To access the schema API in Java, you

need the Schema instance of the database you want to use. For example,

0Schema schema = database.getMetadata().getSchema();

Class

OrientDB draws from the Object Oriented programming paradigm in the concept of the Class. A class is a type of record. In comparison

to Relational database systems, it is most similar in conception to the table.

Classes can be schema-less, schema-full or schema-hybrid. They can inherit from other classes, shaping a tree of classes. In other words,

a sub-class extends the parent class, inheriting all attributes.

Each class has its own clusters. By default, these clusters are logical, but they can also be physical. A given class must have at least one
cluster defined as its default, but it can support multiple clusters. OrientDB writes new records into the default cluster, but always

reads from all defined clusters.

When you create a new class, OrientDB creates a default physical cluster that uses the same name as the class, but in lowercase.

Creating Persistent Classes

Classes contain one or more properties. This mode is similar to the classical model of the Relational database, where you must define

tables before you can begin to store records.

To create a persistent class in Java, use the createclass() method:

OClass account = database.getMetadata().getSchema().createClass("Account");

This method creates the class Account on the database. It simultaneously creates the physical cluster account , to provide storage for

records in the class Account .

Getting Persistent Classes

With the new persistent class created, you may also need to get its contents.

To retrieve a persistent class in Java, use the getclass() method:

OClass account = database.getMetadata().getSchema().getClass("Account");

This method retrieves from the database the persistent class Account . If the query finds that the Account class does not exist, it

returns NULL .

Dropping Persistent Classes

In the event that you no longer want the class, you can drop, or delete, it from the database.

To drop a persistent class in Java, use the o0Sschema.dropclass() method:

database.getMetadata().getSchema().dropClass("Account");

This method drops the class Account from your database. It does not delete records that belong to this class unless you explicitly ask
it to do so:

database.command(new OCommandSQL("DELETE FROM Account")).execute();
database.getMetadata().getSchema().dropClass("Account");

Constraints

Working in schema-full mode requires that you set the strict mode at the class-level, by defining the setstrictMode() method to

TRUE . In this case, records of that class cannot have undefined properties.

Properties

In OrientDB, a property is a field assigned to a class. For the purposes of this tutorial, consider Property and Field as synonymous.
Creating Class Properties

After you create a class, you can define fields for that class. To define a field, use the createProperty() method.

OClass account = database.getMetadata().getSchema().createClass("Account");
account.createProperty("id", OType.Integer);
account.createProperty("birthbDate", OType.Date);

These lines create a class Account , then defines two properties id and birthbate . Bear in mind that each field must belong to one

of the supported types. Here these are the integer and date types.

Dropping Class Properties

In the event that you would like to remove properties from a class you can do so using the dropProperty() method under oclass .

database.getMetadata().getSchema().getClass("Account").dropProperty('"name");

When you drop a property from a class, it does not remove records from that class unless you explicitly ask for it, using the uUPDATE. . .

REMOVE statements. For instance,

database.getMetadata().getSchema().getClass("Account").dropProperty('"name");
database.command(new OCommandSQL("UPDATE Account REMOVE name')).execute();

The first method drops the property from the class. The second updates the database to remove the property.

Relationships

OrientDB supports two types of relationships: referenced and embedded.

Referenced Relationships

In the case of referenced relationships, OrientDB uses a direct link to the referenced record or records. This allows the database to avoid

the costly J0IN operations used by Relational databases.

customer

Record A ------------- > Record B
CLASS=Invoice CLASS=Customer
RID=5:23 RID=10:2

In the example, Record A contains the reference to Record B in the property customer . Both records are accessible by any other
records since each has a Record ID.

1:1 and n:1 Reference Relationships
In one to one and many to one relationships, the reference relationship is expressed usingthe Link type. For instance.

OClass customer= database.getMetadata().getSchema().createClass("Customer");
customer.createProperty('"name", OType.STRING);

OClass invoice = database.getMetadata().getSchema().createClass("Invoice");
invoice.createProperty("id", OType.INTEGER);

invoice.createProperty('date", OType.DATE);
invoice.createProperty('customer", OType.LINK, customer);

Here, records of the class 1Invoice link to arecord of the class customer , through the field customer .

1:n and n:n Reference Relationships.

In one to many and many to many relationships, OrientDB expresses the referenced relationship using collections of links.

e LINKLIST An ordered list of links.
e LINKSET An unordered set of links, that does not accept duplicates.

e LINkMAP An ordered map of links, with a string key. It does not accept duplicate keys.

For example,

OClass orderItem = db.getMetadata().getSchema().createClass("OrderItem");
orderItem.createProperty("id", OType.INTEGER);
orderItem.createProperty("animal", OType.LINK, animal);

OClass order = db.getMetadata().getSchema().createClass("Order");
order.createProperty("id", OType.INTEGER);
order.createProperty('"date", OType.DATE);
order.createProperty("items", OType.LINKLIST, orderItem);

Here, you have two classes: order and orderItem and a 1:n referenced relationship is created between them.

Embedded Relationships

In the case of embedded relationships, OrientDB contains the relationship within the record. Embedded relationships are stronger than
referenced relationships, but the embedded record does not have its own Record ID. Because of this, you cannot reference them directly
through other records. The relationship is only accessible through the container record. If the container record is deleted, then the

embedded record is also deleted.

address
Record A e > Record B
CLASS=Account CLASS=Address
RID=5:23 NO RID!

Here, Record A contains the entirety of Record B in the property address . You can only reach Record B by traversing the container,
Record A.

orientdb> SELECT FROM Account WHERE Address.city = 'Rome’

1:1 and n:1 Embedded Relationships

For one to one and many to one embedded relationships, OrientDB uses links of the emeppED type. For example,

OClass address = database.getMetadata().getSchema().createClass("Address");

OClass account = database.getMetadata().getSchema().createClass("Account");
account.createProperty("id", OType.INTEGER);
account.createProperty("birthDate", OType.DATE);
account.createProperty("address", OType.EMBEDDED, address);

Here, records of the class Account embed records for the class Address .

1:n and n:n Embedded Relationships
In the case of one to many and many to many relationships, OrientDB sues a collection embedded link types:

e EMBEDDEDLIST An ordered list of records.
e EMBEDDEDSET An unordered set of records. It doesn't accept duplicates.

e EMBEDDEDMAP An ordered map of records as key-value pairs. It doesn't accept duplicate keys.

For example,

OClass orderItem = db.getMetadata().getSchema().createClass("OrderItem");
orderItem.createProperty("id", OType.INTEGER);
orderItem.createProperty("animal", OType.LINK, animal);

OClass order = db.getMetadata().getSchema().createClass("Order");
order.createProperty("id", OType.INTEGER);
order.createProperty("date", OType.DATE);
order.createProperty("items", OType.EMBEDDEDLIST, orderItem);

This establishes a one to many relationship between the classes order and orderItem .

Constraints

OrientDB supports a number of constraints for each field. For more information on setting constraints, see the ALTER PROPERTY
command.

e Minimum Value: setmin() The field accepts a string, because it works also for date ranges.
e Maximum Value: setMax() The field accepts a string, because it works also for date rangers.
e Mandatory: setMandatory() This field is required.

e Read Only: setReadonly() This field cannot update after being created.

e Not Null: setNotNull() This field cannot be null.

e Unique: This field doesn't allow duplicates or speedup searches.

e Regex: This field must satisfy Regular Expressions

For example,

profile.createProperty("nick", OType.STRING).setMin("3").setMax("30").setMandatory(true).setNotNull(true);
profile.createIndex('nickIdx", OClass.INDEX_TYPE.UNIQUE, '"nick"); // Creates unique constraint

profile.createProperty("name", OType.STRING).setMin("3").setMax("30");
profile.createProperty("surname", OType.STRING).setMin("3").setMax("30");
profile.createProperty("registeredon", OType.DATE).setMin("2010-01-01 00:00:00");
profile.createProperty("lastAccessOn", OType.DATE).setMin("2010-01-01 00:00:00");

Indices as Constraints

To define a property value as unique, use the UNIQUE index constraint. For example,

profile.createIndex("EmployeeId", OClass.INDEX_TYPE.UNIQUE, "id");

You can also constrain a group of properties as unique by creating a comp osite index made from multiple fields. For instance,

http://en.wikipedia.org/wiki/Regular_expression

profile.createIndex('"compositeIdx", OClass.INDEX_TYPE.NOTUNIQUE, "name", "surname");

For more information about indexes look at Index guide.

Graph or Document API?

In OrientDB, we created 2 different APIs: the Document API and the Graph API. The Graph API works on top of the Document API.
The Document API contains the Document, Key/Value and Object Oriented models. The Graph APT handles the Vertex and Edge

relationships.

YOU, THE USER

\ 7/ |

\/ =
Sooooooooooooo + \ /
| Graph API | \/
fooooooooooooo Pooooooosoooooooo0 +
| Document API |
T +

Graph API

With OrientDB 2.0, we improved our Graph API to support all models in just one Multi-M odel API. This API will probably cover

80% of your database use cases, so it should be your "go to" API, if you're starting with OrientDB.
Using the Graph API:

e Your Data (‘records' in the RDBM S world) will be modeled as Vertices and Edges. You can store properties in both.

e You can still work in Schema-Less, Schema-Full or Hybrid modes.

e Relationships are modeled as Bidirectional Edges. If the Lightweight edge setting is active, OrientDB uses Lightweight Edges in
cases where edges have no properties, so it has the same impact on speed and space as with Document LINKs, but with the
additional bonus of having bidirectional connections. This means you can use the Move VERTEX command to refactor your graph

with no broken LINKs. For more information how Edges are managed, please refer to Lightweight Edges.

Document API

What about the remaining 20% of your database use cases? Should you need a Document Database (while retaining the additional

OrientDB features, like LINKs) or you come from the Document Database world, using the Document API could be the right choice.
These are the Pros and Cons of using the Document API:

o The Document API is simpler than the Graph API in general.

e Relationships are only mono-directional. If you need bidirectional relationships, it is your responsibility to maintain both LINKs.

e A Document is an atomic unit, while with Graphs, the relationships are modeled through In and Out properties. For this reason,
Graph operations must be done within transactions. In contrast, when you create a relationship between documents with a LINK,
the targeted linked document is not involved in this operation. This results in better M ulti-Threaded support, especially with

insert, delete and update operations.

Cluster Selection

When you create a new record and specify the class to which it belongs, OrientDB automatically selects a cluster, where it stores the
physical data of the record. There are a number of configuration strategies available for you to use in determining how OrientDB selects

the appropriate cluster for the new record.

e default It selects the cluster usingthe defaultclusterid property from the class. Prior to version 1.7, this was the default
method.

e round-robin It arranges the configured clusters for the class into sequence and assigns each new record to the next cluster in order.

e balanced It checks the number of records in the configured clusters for the class and assigns the new record to whichever is the

smallest at the time. To avoid latency issues on data insertions, OrientDB calculates cluster size every five seconds or longer.

local When the database is run in distributed mode, it selects the master cluster on the current node. This helps to avoid conflicts

and reduce network latency with remote calls between nodes.

In distributed mode the local cluster strategy is always selected automatically and can't be changed. The local strategy acts as a wrapper

for the underlying strategy (round-robin by default) by filtering the allowed clusters by selecting only those the local server is a master.
But in Studio is never displayed properly, because the underlying name is taken.
Whichever cluster selection strategy works best for your application, you can assign it through the ALTER CLASS...CLUSTERSELECTION

command. For example,

orientdb> ALTER CLASS Account CLUSTERSELECTION round-robin

When you run this command, it updates the Account class to use the round-robin selection strategy. It cycles through available

clusters, adding new records to each in sequence.

Custom Cluster Selection Strategies

In addition to the cluster selection strategies listed above, you can also develop your own select strategies through the Java API. This

ensures that the strategies that are available by default do not meet your particular needs, you can develop one that does.

1. Using your preferred text editor, create the implementation in Java. In order to use a custom strategy, the class must implement the

oClusterSelectionStrategy interface

package mypackage;
public class RandomSelectionStrategy implements OClusterSelectionStrategy {
public int getCluster(final final {
final int[] clusters = iClass.getClusterIds();

// RETURN A RANDOM CLUSTER ID IN THE LIST

int r = new Random().nextInt(clusters.length);
return clusters[r];

public String getName(){ return "random"; }

Bear in mind that the method getcluster() also receives the obocument cluster to insert. You may find this useful, if you want

to assign the clusterid variable, based on the Document content.

2. Register the implementation as a service. You can do this by creating a new file under META-INF/services . Use the filename
com.orientechnologies.orient.core.metadata.schema.clusterselection.0ClusterSelectionStrategy . For its contents, code your

class with the full package. For instance,

mypackage .RandomSelectionStrategy

This adds to the default content in the OrientDB core:

com.orientechnologies.orient.core.metadata.schema.clusterselection.ORoundRobinClusterSelectionStrategy
com.orientechnologies.orient.core.metadata.schema.clusterselection.ODefaultClusterSelectionStrategy
com.orientechnologies.orient.core.metadata.schema.clusterselection.OBalancedClusterSelectionStrategy

3. From the database console, assign the new selection strategy to your class with the ALTER cLASS...CLUSTERSELECTION command.

orientdb> ALTER cLASS Employee CLUSTERSELECTION random

The class Employee now selects clusters using random , your custom strategy.

Managing Dates

OrientDB treats dates as first class citizens. Internally, it saves dates in the Unix time format. M eaning, it stores dates as a long

variable, which contains the count in milliseconds since the Unix Epoch, (that is, 1 January 1970).

Date and Datetime Formats

In order to make the internal count from the Unix Epoch into something human readable, OrientDB formats the count into date and

datetime formats. By default, these formats are:

e Date Format: yyyy-MM-dd

e Datetime Format: yyyy-MM-dd HH:mm:ss

In the event that these default formats are not sufficient for the needs of your application, you can customize them through ALTER

DATABASE . . .DATEFORMAT and DATETIMEFORMAT commands. For il'lStEll'lCE,

orientdb> ALTER DATABASE DATEFORMAT "dd MMMM yyyy'
This command updates the current database to use the English format for dates. That is, 14 Febr 2015.

SQL Functions and Methods

To simplify the management of dates, OrientDB SQL automatically parses dates to and from strings and longs. These functions and

methods provide you with more control to manage dates:

SQL Description
DATE() Function converts dates to and from strings and dates, also uses custom formats.
SYSDATE() Function returns the current date.
.format () Method returns the date in different formats.
.asDate() Method converts any type into a date.
-asbatetime() Method converts any type into datetime.
.aslLong() Method converts any date into long format, (that is, Unix time).

For example, consider a case where you need to extract only the years for date entries and to arrange them in order. You can use the

.format() method to extract dates into different formats.

orientdb> seLecT @RID, id, .format('yyyy') AS year FROM Order

In addition to this, you can also group the results. For instance, extracting the number of orders grouped by year.

https://en.wikipedia.org/wiki/Unix_time

orientdb> seLect .format('yyyy') AS Year, COUNT(*) AS Total

FROM Order ORDER BY Year

------ Pooacoooad
Year | Total |
------ Pooacoooad
2015 | 1]
2014 | 2 |
2013 | 1]
------ Pooacoooad

Dates before 1970

While you may find the default system for managing dates in OrientDB sufficient for your needs, there are some cases where it may not
prove so. For instance, consider a database of archaeological finds, a number of which date to periods not only before 1970 but possibly

even before the Common Era. You can manage this by defining an era or epoch variable in your dates.

For example, consider an instance where you want to add a record noting the date for the foundation of Rome, which is traditionally
referred to as April 21, 753 BC. To enter dates before the Common Era, first run the [ALTER DATABASE DATETIMEFORMAT] command to add

the &6 variable to use in referencing the epoch.

orientdb> ALTER DATABASE DATETIMEFORMAT "yyyy-MM-dd HH:mm:ss GG"

Once you've run this command, you can create a record that references date and datetime by epoch.

orientdb> CREATE VERTEX V SET city = "Rome", = ("0753-04-21 00:00:00 BC")
orientdb> seLECT @RID, city, FROM V

------- Pocoooodhoooocoooocoo000co0000oooqE

@RID | city | date

------- fPocoooodhoooocoo000oo0000o0000oooqE

#9:10 | Rome | 0753-04-21 00:00:00 BC |

------- fhocoooodboooocoo000oo0000o0000o0oqE

Using .format() onInsertion

In addition to the above method, instead of changing the date and datetime formats for the database, you can format the results as you

insert the date.

orientdb> CREATE VERTEX V SET city = "Rome", = ("yyyy-MM-dd HH:mm:ss GG")
orientdb> SELECT @RID, city, FROM V

------ S S S

@RID | city | date

------ S S S

#9:4 | Rome | 0753-04-21 00:00:00 BC |

------ S S S

Here, you again create a vertex for the traditional date of the foundation of Rome. However, instead of altering the database, you format

the date field in CREATE VERTEX command.

Viewing Unix Time

In addition to the formatted date and datetime, you can also view the underlying count from the Unix Epoch, using the astLong()

method for records. For example,

orientdb> SeLECT @RID, city, .asLong() FROM #

------ Pococooodbococccoooocoooocoooooooodr
@RID | city | date

------ Pococooodbococccoooocoooocoooocooods
#9:4 | Rome | -85889120400000

------ PocoocoodbococccoooocoooocoooocooodE

M eaning that, OrientDB represents the date of April 21, 753 BC, as -85889120400000 in Unix time. You can also work with dates

directly as longs.

orientdb> CREATE VERTEX V SET city = "Rome",

orientdb> SsELECT @RID, city, FROM V
------- SR,
@RID | city | date

------- SRR,
#9:11 | Rome | 0753-04-21 00:00:00 BC |
------- T S R,

Use ISO 8601 Dates
According to ISO 8601, Combined date and time in UTC: 2014-12-20T00:00:00. To use this standard change the datetimeformat in the

database:

ALTER DATABASE DATETIMEFORMAT '"yyyy-MM-dd'T'HH:mm:ss.SSS'z'"

Graph Consistency

Before OrientDB v2.1.7, the graph consistency could be assured only by using transactions. The problems with using transactions for

simple operations like creation of edges are:

e speed, the transaction has a cost in comparison with non-transactional operations
e management of optimistic retry at application level. Furthermore, with 'remote' connections this means high latency

e low scalability on high concurrency (this will be resolved in OrientDB v3.0, where commits will not lock the database anymore)

As of v2.1.7, OrientDB provides a new mode to manage graphs without using transactions. It uses the Java class orientGraphNoTx or

via SQL by changing the global setting sqgl.graphConsistencyMode to one of the following values:

e tx , the default, uses transactions to maintain consistency. This was the only available setting before v2.1.7

e notx_sync_repair , avoids the use of transactions. Consistency, in case of a JVM crash, is guaranteed through a database repair
operation, which runs at startup in synchronous mode. The database cannot be used until the repair is finished.

e notx_async_repair , also avoids the use of transactions. Consistency, in case of JVM crash, is guaranteed through a database repair
operation, which runs at startup in asynchronous mode. The database can be used immediately, as the repair procedure will run in
the background.

Both the new modes notx_sync_repair and notx_async_repair will manage conflicts automatically, with a configurable RETRY
(default=50). In case changes to the graph occur concurrently, any conflicts are caught transparently by OrientDB and the operations are

repeated. The operations that support the auto-retry are:

® CREATE EDGE
® DELETE EDGE

® DELETE VERTEX

Usage

To use consistency modes that don't use transactions, set the sql.graphConsistencyMode global settingto notx_sync_repair or
notx_async_repair in OrientDB bin/server.sh script or in the config/orientdb-server-config.xml file under properties section.

Example:

<properties>
<entry name="sql.graphConsistencyMode" value="notx_sync_repair"/>
</properties>
The same could be set by code, before you open any Graph. Example:

0GlobalConfiguration.SQL_GRAPH_CONSISTENCY_MODE.setValue('"notx_sync_repair");

To make this setting persistent, set the txRequiredForsQLGraphOperations property in the storage configuration, so during the following

opening of the Graph, you don't need to set the global setting again:

g.getRawGraph().getStorage().getConfiguration().setProperty("txRequiredForSQLGraphOperations", "false");

Usage via Java API

In order to use non-transactional graphs, after having configured the consistency mode (as above), you can now work with the

orientGraphNoTx class. Example:

OrientGraphNoTx g = new OrientGraphNoTx('"plocal:/temp/mydb");

vl.addEdge("Friend", v2);

Concurrent threads that change the graph will retry the graph change in case of concurrent modification (M VCC). The default value for

maximum retries is 50. To change this value, call the setMaxRetries() API:

OrientGraphNoTx g = new OrientGraphNoTx("plocal:/temp/mydb");
g.setMaxRetries(D

This setting will be used on the active graph instance. You can have multiple threads, which work on the same graph by using multiple
graph instances, one per thread. Each thread can then have different settings. It's also allowed to wirk with threads, which use

transactions (orientGraph class) and to work with concurrent threads, which don't use transactions.

Fetching Strategies

Fetchplans are used in two different scopes:

1. A Connection that uses the Binary Protocol can early load records to the client. On traversing of connected records, the client
doesn't have to execute further remote calls to the server, because the requested records are already in the client's cache.

2. A Connection that uses the HTTP/JSON Protocol can expand the resulting JSON to include connected records as embedded in the
same JSON. This is useful with the HTTP protocol to fetch all the connected records in just one call.

Format for Fetch Plans

In boths scopes, the fetchplan syntaxis the same. In terms of their use, Fetch Plans are strings that you can use at run-time on queries
and record loads. The syntax for these strings is:

[[1evels]] fieldPath: depthLevel

e Levels Is an optional value that indicates which levels to use with the Fetch Plans. Levels start from o . As of version 2.1, levels
use the following syntax:

o Level The specific level on which to use the Fetch Plan. For example, using the level [e] would apply only to the first level.

o Range The range of levels on which to use the Fetch Plan. For example, [0-2] means to use it on the first through third
levels. You can also use the partial range syntax: [-3] which means from the first to fourth levels, while [4-] means from
the fifth level to infinity.

o Any The wildcard variable indicates that you want to use the Fetch Plan on all levels. For example, [*] .

e Field Path Is the field name path, which OrientDB expects in dot notation. The path begins from either the root record or the
wildcard variable * to indicate any field. You can also use the wildcard at the end of the path to specify all paths that start for a
name.

e Depth Level Is the depth of the level requested. The depth level variable uses the following syntax:

o o Indicates to load the current record.
o 1-N Indicates to load the current record to the nth record.
o -1 Indicates an unlimited level.

o -2 Indicates an excluded level.
In the event that you want to express multiple rules for your Fetch Plans, separate them by spaces.

Consider the following Fetch Plans for use with the example above:

Fetch Plan Description
*i-1 Fetches recursively the entire tree.
Fetches recursively all records, but uses the field orders in the root class. Note that the field

*i-1 orders:0 orders only loads its direct content, (that is, the records 8:12 , 8:19 ,and 8:23). No other
records inside of them load.

*:0 Fetches only non-document fields in the root class and the field address.city.country , (that is,
address.city.country:0 records 10:1, 11:2 and 12:3).
[*]in_*:-2 out_*:-2 Fetches all properties, except for edges at any level.

Early loading of records

By default, OrientDB loads linked records in a lazy manner. That is to say, it does not load linked fields until it traverses these fields. In

situations where you need the entire tree of a record, this can prove costly to performance. For instance,

Invoice

3:100
I
| customer
oooooooos > Customer
| 5:233
| address city country
PR > Address--------- > City --------- > Gy
I 10:1 11:2 12:3
I
| orders
[—— >* [OrderItem OrderItem OrderItem]
[8:12 8:19 8:23]

Here, you have a class, Invoice , with linked fields customer , city , and orders . If you were toruna SELECT query on Invoice ,
it would not load the linked class, and it would require seven different loads to build the returned value. In the event that you have a

remote connection, that means seven network calls as well.

In order to avoid performance issues that may arise from this behavior, OrientDB supports fetching strategies, called Fetch Plans, that
allow you to customize how it loads linked records. The aim of a Fetch Plan is to pre-load connected records in a single call, rather than
several. The best use of Fetch Plans is on records loaded through remote connections and when using JSON serializers to produce JSON
with nested records.

NOTE OrientDB handles circular dependencies to avoid any loops while it fetches linking records.

Remote Connections

Under the default configuration, when a client executes a query or loads a single record directly from a remote database, it continues to
send network calls for each linked record involved in the query, (that is, through oLazyRecordList). You can mitigate this with a Fetch
Plan.

When the client executes a query, set a Fetch Plan with a level different from o . This causes the server to traverse all the records of the
return result-set, sending them in response to a single call. OrientDB loads all connected records into the local client, meaning that the
collections remain lazy, but when accessing content, the record is loaded from the local cache to mitigate the need for additional
connections.

Examples using SQL
Acquire Profile and it's first level friendships

SELECT OUT("out_Friend") as friends FROM Profile fetchplan friends:

This will provide a result set of Profile records with a field called friends that contains an array of verticies connected via a

out_Friend edge. Only the friends field is apart of the fetchplan in this instance, any further will be treated as normal.

Examples using the Java APIs

Execute a query with a custom fetch plan

List<ODocument> resultset = database.query(new 0SQLSynchQuery<ODocument>("select * from Profile").setFetchPlan("*:-1"));

Export a document and its nested documents in JSON

Export an invoice and its customer:

invoice.toJSON("fetchPlan:customer:1");

Export an invoice, its customer, and orders:

invoice.toJSON("fetchPlan:customer:1 orders:2");

Export an invoice and all the connected records up to 3rd level of depth:

invoice.toJSON("fetchPlan:*:3");

From SQL.:

SELECT @this.toJSON('fetchPlan:out_Friend:4') FROM #10:20
Export path in outgoing direction by removing all the incoming edges by using wildcards (Since 2.0):
SELECT @this.toJSON('fetchPlan:in_*:-2') FROM #10:20

NOTES::

e To avoid looping, the record already traversed by fetching are exported only by their RIDs (RecordID) form

e "fetchPlan" setting is case sensitive

Browse objects using a custom fetch plan

for (Account a : database.browseClass(Account.class).setFetchPlan("*:0 addresses:-1")) {
System.out.println(a.getName());
}

NOTE: Fetching Object will mean their presence inside your domain entities. So if you load an object using fetchplan *:0 all

LINK type references won't be loaded.

Use Cases

This page contains the solution to the most common use cases. Please don't consider them as the definitive solution, but as suggestions

where to get the idea to solve your needs.

Use cases

e Time Series
Chat
e Use OrientDB as a Key/Value DBM S

e Persistent, Distributed and Transactional Queues

Time Series Use Case

M anaging records related to historical information is pretty common. When you have millions of records, indexes start show their
limitations, because the cost to find the records is O(logN). This is also the main reason why Relational DBM S are so slow with huge
databases.

So when you have millions of record the best way to scale up linearly is avoid using indexes at all or as much as you can. But how can
you retrieve records in a short time without indexes? Should OrientDB scan the entire database at every query? No. You should use the

Graph properties of OrientDB. Let's look at a simple example, where the domain are logs.

A typical log record has some information about the event and a date. Below is the Log record to use in our example. We're going to use

the JSON format to simplify reading:

{
"date" : 5
"priority" : "critical",
"note" : "System reboot"
}

Now let's create a tree (that is a directed, non cyclic graph) to group the Log records based on the granularity we need. Example:

Year -> month (map) -> Month -> day (map) -> Day -> hour (map) -> Hour

Where Year, Month, Day and Hour are vertex classes. Each Vertex links the other Vertices of smaller type. The links should be handled

using a M ap to make easier the writing of queries.

Create the classes:

CREATE CLASS Year
CREATE CLASS Month
CREATE CLASS Day

CREATE CLASS Hour

CREATE PROPERTY Year.month LINKMAP Month
CREATE PROPERTY Month.day LINKMAP Day
CREATE PROPERTY Day.hour LINKMAP Hour

Example to retrieve the vertex relative to the date March 2012, 20th at 10am (2012/03/20 10:00:00):

SELECT month[3].day[20].hour[10].1logs FROM Year WHERE year = "2012"

If you need more granularity than the Hour you can go ahead until the Time unit you need:

Hour -> minute (map) -> Minute -> second (map) -> Second

Now connect the record to the right Calendar vertex. If the usual way to retrieve Log records is by hour you could link the Log records

in the Hour. Example:

Year -> month (map) -> Month -> day (map) -> Day -> hour (map) -> Hour -> log (set) -> Log

The "log" property connects the Time Unit to the Log records. So to retrieve all the log of March 2012, 20th at 10am:

SELECT expand(month[3].day[20].hour[10].1logs) FROM Year WHERE year = "2012"

That could be used as starting point to retrieve only a sub-set of logs that satisfy certain rules. Example:

SELECT FROM (
SELECT expand(month[3].day[20].hour[10].1logs) FROM Year WHERE year = "2012"
) WHERE priority = 'critical'

That retrieves all the CRITICAL logs of March 2012, 20th at 10am.

Join multiple hours

If you need multiple hours/day s/months as result set you can use the unionAll() function to create a unique result set:

SELECT expand(records) from (
SELECT unionAll(month[3].day[20].hour[10].1logs, month[3].day[20].hour[11].logs) AS records
FROM Year WHERE year = '"2012"

In this example we create a union between the 10th and 11th hours. But what about extracting all the hours of a day without writing a

huge query? The shortest way is using the Traverse. Below the Traverse to get all the hours of one day:

TRAVERSE hour FROM (
SELECT expand(month[3].day[20]) FROM Year WHERE year = "2012"
)

So putting all together this query will extract all the logs of all the hours in a day:

SELECT expand(logs) FROM (
SELECT unionAll(logs) AS logs FROM (
TRAVERSE hour FROM (
SELECT expand(month[3].day[20]) FROM Year WHERE year = "2012"
)

Aggregate

Once you built up a Calendar in form of a Graph you can use it to store aggregated values and link them to the right Time Unit.

Example: store all the winning ticket of Online Games. The record structure in our example is:

{

"date" :

"win" : 0

"machine" : "AKDJKD7673JJSH",

You can link this record to the closest Time Unit like in the example above, but you could sum all the records in the same Day and link it

to the Day vertex. Example:

Create a new class to store the aggregated daily records:

CREATE CLASS Dailylog

Create the new record from an aggregation of the hour:

INSERT INTO DailylLog
SET win = (

SELECT SUM(win) AS win FROM Hour WHERE BETWEEN '2012-03-20 10:00:00' AND '2012-03-20 11:00:00'
)

Link it in the Calendar graph assuming the previous command returned #23:45 as the Recordld of the brand new DailyLog record:

Time Series

UPDATE (
SELECT expand(month[3].day[20]) FROM Year WHERE year = "2012"
) ADD logs = #23:45

90

Chat Use Case

OrientDB allows modeling of rich and complex domains. If you want to develop a chat based application, you can use whatever you

want to create the relationships between User and Room.

We suggest avoiding using Edges or Vertices connected with edges for messages. The best way is using the document API by creating
one class per chat room, with no index, to have super fast access to last X messages. In facts, OrientDB stores new records in append

only, and the @rid is auto generated as incrementing.
The 2 most common use cases in a chat are:

e writing a message in a chat room

e load last page of messages in a chat room

Create the initial schema

In order to work with the chat rooms, the rule of the thumb is creating a base abstract class ("ChatRoom") and then let to the concrete

classes to represent individual ChatRooms.

Create the base ChatRoom class

create class ChatRoom

alter class ChatRoom abstract

create property ChatRoom. datetime
create property ChatRoom. string
create property ChatRoom.user LINK OUser

Create a new ChatRoom

create class ItalianRestaurant extends ChatRoom

Class "ItalianRestaurant” will extend all the properties from ChatRoom.
Why creating a base class? Because you could always execute polymorphic queries that are cross-chatrooms, like get all the message

from user "Luca":

select from ChatRoom where user.name = 'Luca'

Create a new message in the Chat Room

To create a new message in the chat room you can use this code:

public ODocument addMessage {
ODocument msg = new ODocument(chatRoom);
msg.field("date", new Date());
msg.field("text", message);
msg.field("user", user);
msg.save();
return msg;

Example:

addMessage("ItalianRestaurant", "Have you ever been at Ponza island?", database.getUser());

Retrieve last messages

You can easily fetch pages of messages ordered by date in descending order, by using the OrientDB's @rid . Example:

select from ItalianRestaurant order by @rid desc skip 0 limit

You could write a generic method to access to a page of messages, like this:

public Iterable<ODocument> loadMessages {
return graph.getRawGraph().command("select from " + chatRoom + " order by @rid desc skip " + fromLast + " limit " + pageSize
) .execute();

}

Loading the 2nd (last) page from chat "ItalianRestaurant", would become this query (with pageSize = 50):

select from ItalianRestaurant order by @rid desc skip limit

This is super fast and O(1) even with million of messages.

Limitations
Since OrientDB can handle only 32k clusters, you could have maximum 32k chat rooms. Unless you want to rewrite the entire
FreeNode, 32k chat rooms will be more than enough for most of the cases.

However, if you need more than 32k chat rooms, the suggested solution is still using this approach, but with multiple databases (even

on the same server, because one OrientDB Server instance can handle thousands of databases concurrently).
In this case you could use one database to handle all the metadata, like the following classes:

e ChatRoom, containing all the chatrooms, and the database where are stored. Example: { "@class": "ChatRoom", "description":
"OrientDB public channel", "databaseName", "db1", "clusterName": "orientdb" }

e User, containing all the information about accounts with the edges to the ChatRoom vertices where they are subscribed

OrientDB cannot handle cross-database links, so when you want to know the message's author, you have to look up into the
"Metadata" database by @RID (that is O(1)).

https://freenode.net/index.shtml

Key Value Use Case

OrientDB can also be used as a Key Value DBM S by using the super fast Indexes. You can have as many Indexes as you need.

HTTP

OrientDB REST ful HTTP protocol allows to talk with a OrientDB Server instance using the HTTP protocol and JSON. OrientDB

supports also a highly optimized Binary protocol for superior performances.

Operations

To interact against OrientDB indexes use the four methods of the HTTP protocol in REST fashion:

e PUT, to create or modify an entry in the database

e GET, to retrieve an entry from the database. It's idempotent that means no changes to the database happen. Remember that in IE6
the URL can be maximum of 2,083 characters. Other browsers supports longer URLs, but if you want to stay compatible with all
limit to 2,083 characters

e DELETE, to delete an entry from the database

Create an entry

To create a new entry in the database use the Index-PUT API.
Syntax: http://<server>:[<port>]/index/<index-name>/<key>
Examp le:

HTTP PUT: http://localhost:2480/index/customers/jay

"name" : "Jay",
"surname" : "Miner"

HTTP Response 204 is returned.

Retrieve an entry

To retrieve an entry from the database use the Index-GET API.
Syntax: http://<server>:[<port>]/index/<index-name>/<key>
Example:

HTTP GET: http://localhost:2480/index/customers/jay

HTTP Response 200 is returned with this JSON as payload:

"name" : "Jay",
"surname" : "Miner"

Remove an entry

To remove an entry from the database use the Index-DELETE APIL.
Syntax: http://<server>:[<port>]/index/<index-name>/<key>
Example:

HTTP DELETE: http://localhost:2480/index/customers/jay

HTTP Response 200 is returned

Step-by-Step tutorial

Before to start assure you've a OrientDB server up and running, In this example we'll use curl considering the connection to localhost to
the default HTTP post 2480. The default "admin" user is used.

Create a new index

To use OrientDB as a Key/Value store we need a brand new manual index, let's call it "mainbucket". We're going to create it as UNIQUE

because keys cannot be duplicated. If you can have multiple keys consider:

e creating the index as NOTUNIQUE

e leave it as UNIQUE but as value handle array of documents

Create the new manual unique index "mainbucket":

> curl --basic -u admin:admin localhost:2480/command/demo/sql -d "create index mainbucket UNIQUE"

Response:

{ "result" : [
{ "@type" : "d" , "@version" : 0, "value" : 0, "@fieldTypes" : "value=1" }
]
}

Store the first entry

Below we're going to insert the first entry by using the HTTP PUT method passing "jay" as key in the URL and as value the entire

document in form of JSON:

> curl --basic -u admin:admin -X PUT localhost:2480/index/demo/mainbucket/jay -d "{'name':'Jay', 'surname':'Miner'}"

Response:

Key 'jay' correctly inserted into the index mainbucket.

Retrieve the entry just inserted
Below we're going to retrieve the entry we just entered by using the HTTP GET method passing "jay" as key in the URL:

> curl --basic -u admin:admin localhost:2480/index/demo/mainbucket/jay

Response:

[{

"@type" : "d" , "@rid" : "#3:477" , "@version" : 0O,
"name" : "Jay"
"surname" : "Miner"

}

Note that an array is always returned in case multiple records are associated to the same key (if NOTUNIQUE index is used). Look also
at the document has been created with RID #3:477. You can load it directly if you know the RID. Remember to remove the # character.

Example:

> curl --basic -u admin:admin localhost:2480/document/demo/3:477

Response:
{
"@type" : "d" , "@rid" : "#3:477" , "@version" : 0O,
"name" : "Jay",
"surname" : "Miner"
3

Drop an index

Once finished drop the index "mainbucket" created for the example:

> curl --basic -u admin:admin localhost:2480/command/demo/sql -d "drop index mainbucket"

Response:

{ "result" : [
{ "@type" : "d" , "@version" : 0, "value" : 0, "@fieldTypes" : "value=1" }

Distributed queues use case

Implementing a persistent, distributed and transactional queue system using OrientDB is possible and easy. Besides the fact you don't
need a specific API accomplish a queue, there are multiple ap proaches you can follow depending by your needs. The easiest way is

using OrientDB SQL, so this works with any driver.

Create the queue class first:

create class queue

You could have one class per queue. Example of push operation:

insert into queue set = "this is the first message", = ()

Since OrientDB by default keeps the order of creation of records, a simple delete from the queue class with limit = 1 gives to you the

perfect pop:

delete from queue return before limit

The "return before" allows you to have the deleted record content. If you need to peek the queue, you can just use the select:

select from queue limit

That's it. Your queue will be persistent, if you want transactional and running in cluster distributed.

Administration

OrientDB has a number of tools to make administration of the database easier. There is the console, which allows you to run a large

number of commands.

There is also the OrientDB Studio, which allows you to run queries and visually look at the graph.

GratefulDeadConcerts (admin) v

@ Browse O Graph </> Functions

»
Graph Editor ave Configuration © Add Vertex I @ Clear Canvas I More v I

select from V limit 5|

[\
\2 | 1
. \ J
49
j2l %
e /{;2

OrientDB also offers several tools for the import and export of data, logging and trouble shooting, along with ETL tools.

All of OrientDB's administration facilities are aimed to make your usage of OrientDB as simple and as easy as possible.

For more information see:

e Studio

e Console

e Backup and Restore
e Export and Import
e Logging

e Trouble shooting

e Performance Tuning
e ETL Tools

e Stress Test Tool

Console

OrientDB provides a Console Tool, which is a Java application that connects to and operates on OrientDB databases and Server

instances.

Console Modes

There are two modes available to you, while executing commands through the OrientDB Console: interactive mode and batch mode.

Interactive Mode

By default, the Console starts in interactive mode. In this mode, the Console loads to an orientdb> prompt. From there you can

execute commands and SQL statements as you might expect in any other database console.

You can launch the console in interactive mode by executing the console.sh for Linux OS systems or console.bat for Windows

systems in the bin directory of your OrientDB installation. Note that running this file requires execution p ermissions.

$ $ORTENTDB_HOME/bin

$./console.sh

OrientDB console v.X.X.X (build ©) www.orientdb.com
Type 'HELP' to display all the commands supported.
Installing extensions for GREMLIN language v.X.X.X

orientdb>

From here, you can begin running SQL statements or commands. For a list of these commands, see commands.

Batch mode

When the Console runs in batch mode, it takes commands as arguments on the command-line or as a text file and executes the commands

in that file in order. Use the same console.sh or console.bat file found in bin at the OrientDB installation directory.

e Command-line: To execute commands in batch mode from the command line, pass the commands you want to run in a string,

separated by a semicolon.

$ S$ORIENTDB_HOME/bin/console.sh "CONNECT REMOTE:localhost/demo; SELECT FROM Profile"

e Script Commands: In addition to entering the commands as a string on the command-line, you can also save the commands to a

text file as a semicolon-separated list.

$ vim commands.txt

CONNECT REMOTE:localhost/demo;SELECT FROM Profile

$ $ORIENTDB_HOME/bin/console.sh commands.txt

Ignoring Errors

When running commands in batch mode, you can tell the console to ignore errors, allowing the script to continue the execution, with the

ignoreErrors setting

$ vim commands.txt

SET ignoreErrors

Enabling Echo

Regardless of whether you call the commands as an argument or through a file, when you run console commands in batch mode, you
may also need to display them as they execute. You can enable this feature using the echo setting, near the start of your commands
list.

$ vim commands.txt

SET echo

Enabling Date in prompt

Starting from v2.2.9, to enable the date in the prompt, set the variable promptbateFormat with the date format following the

SimpleDateFormat specs.

orientdb {db= 1}> promptDateFormat "yyy-MM-dd hh:mm:ss.sss"

orientdb {db= 1 (2016-08-26 09:34:12.012)}>

Console commands

OrientDB implements a number of SQL statements and commands that are available through the Console. In the event that you need

information while working in the console, you can access it using either the HeLP or ? command.

Command Description
ALTER CLASS Changes the class schema
ALTER CLUSTER Changes the cluster attributes
ALTER DATABASE Changes the database attributes
ALTER PROPERTY Changes the class's property schema
BACKUP DATABASE Backup a database
BEGIN Begins a new transaction
BROWSE CLASS Browses all the records of a class
BROWSE CLUSTER Browses all the records of a cluster
CLASSES Displays all the configured classes
CLUSTER STATUS Displays the status of distributed cluster of servers
CLUSTERS Displays all the configured clusters
COMMIT Commits an active transaction
CONFIG Displays the configuration where the opened database is located (local or remote)
CONFIG GET Returns a configuration value
CONFIG SET Set a configuration value

CONNECT Connects to a database

https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

CREATE CLASS

CREATE CLUSTER

CREATE CLUSTER

CREATE DATABASE

CREATE EDGE

CREATE INDEX

CREATE LINK

CREATE VERTEX

DECLARE INTENT

DELETE

DICTIONARY KEYS

DICTIONARY GET

DICTIONARY PUT

DICTIONARY
REMOVE

DISCONNECT

DISPLAY RECORD

DISPLAY RAW
RECORD

DROP CLASS

DROP CLUSTER

DROP DATABASE

DROP INDEX

DROP PROPERTY

EXPLAIN

EXPORT DATABASE

EXPORT RECORD

FIND REFERENCES

FREEZE DATABASE

GET

GRANT

GREMLIN

IMPORT DATABASE

INDEXES

INFO

INFO CLASS

INSERT

Js

Jss

Creates a new class

Creates a new cluster inside a database
Creates a new record cluster

Creates a new database

Create a new edge connecting two vertices
Create a new index

Create a link readinga RDBM S JOIN
Create a new vertex

Declares an intent

Deletes a record from the database using the SQL syntax. To know more about the SQL syntax go here

Displays all the keys in the database dictionary

Loookups for a record using the dictionary. If found set it as the current record

Inserts or modify an entry in the database dictionary. The entry is composed by key=String, value=record-

id
Removes the association in the dictionary

Disconnects from the current database

Displays current record's attributes
Displays current record's raw format

Drop a class

Drop a cluster

Drop a database

Drop an index

Drop a property from a schema class

Explain a command by displaying the profiling values while executing it
Exports a database

Exports arecord in any of the supported format (i.e. json)

Find the references to a record

Freezes the database locking all the changes. Use this to raw backup. Once frozen it uses the RELEASE

DATABASE to release it

Returns the value of a property

Grants a permission to a user

Executes a Gremlin script

Imports a database previously exported
Displays information about indexes
Displays information about current status

Displays information about a class

Inserts a new record in the current database using the SQL syntax. To know more about the SQL syntax go

here
Executes a Javascript in the console

Executes a Javascript in the server

LIST DATABASES

LIST
CONNECTIONS

LOAD RECORD

LOAD SCRIPT

PROFILER

PROPERTIES

pwd

REBUILD INDEX

RELEASE
DATABASE

RELOAD RECORD

RELOAD SCHEMA

ROLLBACK

RESTORE
DATABASE

SELECT

REVOKE

SET

SLEEP

TRAVERSE

TRUNCATE CLASS

TRUNCATE
CLUSTER

TRUNCATE RECORD

UPDATE

HELP

EXIT

List the available databases
List the available connections

Loads a record in memory and set it as the current one
Loads a script and execute it

Controls the Profiler

Returns all the configured properties

Display current path

Rebuild an index
Releases a Console Freeze Database database

Reloads a record in memory and set it as the current one
Reloads the schema

Rollbacks the active transaction started with begin
Restore a database

Executes a SQL query against the database and display the results. To know more about the SQL syntax go
here

Revokes a permission to a user

Changes the value of a property

Sleep for the time specified. Useful on scripts
Traverse a graph of records

Remove all the records of a class (by truncating all the underlying configured clusters)
Remove all the records of a cluster

Truncate a record you can't delete because it's corrupted

Updates a record in the current database using the SQL syntax. To know more about the SQL syntax go
here

Prints this help

Closes the console

Custom Commands

In addition to the commands implemented by OrientDB, you can also develop custom commands to extend features in your particular
imp lementation. To do this, edit the OConsoleDatabaseApp class and add to it a new method. There's an auto-discovery system in
place that adds the new method to the available commands. To provide a description of the command, use annotations. The command

name must follow the Java code convention of separating words using camel-case.

For instance, consider a case in which you might want to add a Move cLUSTER command to the console:

@ConsoleCommand(description = "Move the physical location of cluster files")
public void moveCluster

"cluster-name" "The name or the id of the cluster to remove") String iClusterName,
@ConsoleParameter

ewPath) {

"target-path" "path of the new position where to move the cluster files") String iN

checkCurrentDatabase(); // THE DB MUST BE OPENED

System.out.println("Moving cluster '" + iClusterName + "' to path " + iNewPath + "...");

}

https://github.com/orientechnologies/orientdb/blob/master/tools/src/main/java/com/orientechnologies/orient/console/OConsoleDatabaseApp.java

Once you have this code in place, MOVE CLUSTER now appears in the listing of available commands shown by HeLp .
orientdb> HeLp
AVAILABLE COMMANDS:

* alter class Alter a class in the database schema
* alter cluster Alter class in the database schema

move cluster Move the physical location of cluster files

* help Print this help
* exit Close the console

orientdb> MOVE CLUSTER foo /temp

Moving cluster 'foo' to path /tmp...

In the event that you develop a custom command and find it especially useful in your deployment, you can contribute your code to the
OrientDB Community !

https://groups.google.com/forum/#!forum/orient-database

Console - BACKUP

Executes a complete backup on the currently opened database. It then compresses the backup file using the ZIP algorithm. You can then

restore a database from backups, using the ResTOrRe DATABASE command. You can automate backups using the Automatic-Backup server

plugin.
Backups and restores are similar to the ExPORT DATABASE and IMPORT DATABASE , but they offer better performance than these options.

NOTE: OrientDB Community Edition does not support backing up remote databases. OrientDB Enterprise Edition does

support this feature. For more information on how to implement this with Enterprise Edition, see Remote Backups.

Syntax:

BACKUP DATABASE <output-file> [-incremental] [-compressionLevel=<compressionLevel>] [-bufferSize=<bufferSize>]

e <output-file> Defines the path to the backup file.

e -incremental Option to execute an incremental backup. When enabled, it computes the data to backup as all new changes since
the last backup. Available only in the OrientDB Enterprise Edition version 2.2 or later.

e - compressionLevel Defines the level of compression for the backup file. Valid levels are @ to 9 . The default is 9 . Available in
1.7 or later.

e -huffersize Defines the compression buffer size. By default, this is set to 1M B. Available in 1.7 or later.

Permissions:

In order to enable a user to execute this command, you must add the permission of create for the resource database.backup to the

database user.
Example:

e Backing up a database:

orientdb> CONNECT plocal:../databases/mydatabase admin admin

orientdb> BACKUP DATABASE /backups/mydb.zip

Backing current database to: database mydb.zip
Backup executed in 0.52 seconds

Backup API

In addition to backups called through the Console, you can also manage backups through the Java API. Using this, you can perform

either a full or incremental backup on your database.

Full Backup

In Java or any other language that runs on top of the JVM, you can initiate a full backup by using the backup() method on a database

instance.

db.backup(out, options, callable, listener, compressionLevel, bufferSize);

out Refers to the outputstream that it uses to write the backup content. Use a FileoutputStream to make the backup
persistent on disk.
e options Defines backup options as a Map<String, Object> object.
e callable Defines the callback to execute when the database is locked.
e listener Defines the listened called for backup messages.
e compressionLevel Defines the level of compression for the backup. It supports levels between o and 9 , where o equals no

compression and 9 the maximum. Higher compression levels do mean smaller files, but they also mean the backup requires more

http://www.orientechnologies.com/orientdb-enterprise/
http://www.orientechnologies.com/enterprise/last/servermanagement.html

from the CPU at execution time.

e huffersize Defines the buffer size in bytes. The larger the buffer, the more efficient the comrpession.

Example:

ODatabaseDocumentTx db = new ODatabaseDocumentTx('"plocal:/temp/mydb™);
db.open("admin", "admin");
try{
OCommandOutputListener listener = new OCommandOutputListener() {
@override
public void onMessage {
System.out.print(iText);
}
iy

OutputStream out = new FileOutputStream("/temp/mydb.zip");
db.backup(out,null, null,listener,9,)8

finally {

db.close();

-

Incremental Backup

As of version 2.2, OrientDB Enterprise Edition supports incremental backups executed through Java or any language that runs on top of

the JVM, using the incrementalBackup() method against a database instance.

db.incrementalBackup(backupDirectory);

e backupbirectory Defines the directory where it generates the incremental backup files.

It is important that previous incremental backup files are present in the same directory, in order to compute the database portion to back

up, based on the last incremental backup.

Example:

ODatabaseDocumentTx db = new ODatabaseDocumentTx('"plocal:/temp/mydb™);
db.open("admin", "admin");
try{
db.backup("/var/backup/orientdb/mydb");
} finally {
db.close();

For more information, see:

e Restore Database
e Export Database
e Import Database
e Console-Commands

e (ODatabaseExport Java class

https://github.com/orientechnologies/orientdb/blob/master/core/src/main/java/com/orientechnologies/orient/core/db/tool/ODatabaseExport.java

Console - BEGIN

Initiates a transaction. When a transaction is open, any commands you execute on the database remain temporary. In the event that you
are satisfied with the changes, you can call the covmiT command to commit them to the database. Otherwise, you can call the

ROLLBACK command, to roll the changes back to the point where you called BeGIN .

Syntax:

BEGIN

Examples

e Begin a transaction:
orientdb> BecIn

Transaction 1 is running

e Attempting to begin a transaction when one is already open:
orinetdb> BecIn

Error: an active transaction is currently open (id=1). Commit or rollback
before starting a new one.

e Making changes when a transaction is open:

orientdb> INSERT INTO Account (name) VALUES ('tx test') SELECT FROM Account WHERE name LIKE 'tx%'

e o
| RID | name
e oo
0 | #9:-2 | tx test
oo oo

When a transaction is open, new records all have temporary Record ID's, which are given negative values, (for instance, like the #9:-2

shown above). These remain in effect until you run commrt
For more information on Transactions, see

e Transactions
Console Command COMMIT
Console Command ROLLBACK

Console Commands

Console - BROWSE CLASS

Displays all records associated with the given class.

Syntax:

BROWSE CLASS <class-name>

e <class-name> Defines the class for the records you want to display.
Permissions:

In order to enable a user to execute this command, you must add the permission of read for the resource database.class.<class> to

the database user.
Example:

e Browse records associated with the class city :

orientdb> BROWSE cLASS City

0 | -6:0 | Rome
1| -6:1 | London
2 | -6:2 | Honolulu

For more information on other commands, see Console Commands.

Console - BROWSE CLUSTER

Displays all records associated with the given cluster.

Syntax:

BROWSE CLUSTER <cluster-name>

e <cluster-name> Defines the cluster for the records you want to display.
Permissions:

In order to enable a user to execute this command, you must add the permission of read for the resource database.cluster.<class>

to the database user.
Example:

e Browse records associated with the cluster city :

orientdb> BROWSE CLUSTER City

0 | -6:0 | Rome
1| -6:1 | London
2 | -6:2 | Honolulu

For more information on other commands, see Console Commands.

Console - LIST CLASSES

Displays all configured classes in the current database.
Syntax:

e Long Syntax:

LIST CLASSES

e Short Syntax:

CLASSES

Example

e List current classes in the database:

orientdb> LIST cLASSES

CLASSES
------------- T T pupupupp
NAME | ID | CLUSTERS | ELEMENTS
------------- T T T pupupupup
Person | 0 | person | 7
Animal | 1 | animal | 5
AnimalRace | 2 | AnimalRace | 0
AnimalType | 3 | AnimalType | 1
OrderItem | 4 | OrderItem | 0
Order | 5 | Order | 0
City | 6 | City | 3
------------- B T I pupupupup
TOTAL 16

For more information on other commands, see Console Commands.

Console - CLUSTER STATUS

Displays the status of the cluster in distributed configuration.

Syntax:

CLUSTER STATUS

Example:

e Display the status of the cluster:

orientdb> cLUSTER STATUS

{
"localName": "_hzInstance_1 orientdb",
"localId": "3735e690-9a7b-44d2-b4bc-27089dan65e2",
"members": [
{
"id": "3735e690-9a7b-44d2-b4bc-27089da065e2",
"name": "nodel",
"startedOn": "2015-05-14 17:06:40:418",
"listeners": [
{
"protocol": "ONetworkProtocolBinary",
"listen": "10.3.15.55:2424"
}
{
"protocol": "ONetworkProtocolHttpDb",
"listen": "10.3.15.55:2480"
}
1,
"databases": []
}
]
}

For more information on other commands, see Console Commands.

Console - LIST CLUSTERS

Displays all configured clusters in the current database.
Syntax:

e Long Syntax:

LIST CLUSTERS

e Short Syntax:

CLUSTERS

Example:

e List current clusters on database:

orientdb> LIST CLUSTERS

CLUSTERS
------------- B L pepup
NAME | ID | TYPE | ELEMENTS
------------- T L pepup
metadata | 0 | Physical | 11
index | 1 | Physical | 0
default | 2 | Physical | 779
csv | 3 | Physical | 1000
binary | 4 | Physical | 1001
person | 5 | Physical | 7
animal | 6 | Physical | 5
animalrace | -2 | Logical | 0
animaltype | -3 | Logical | 1
orderitem | -4 | Logical | 0
order | -5 | Logical | 0
city | -6 | Logical | 3
------------- T
TOTAL 2807

For information on creating new clusters in the current database, see the CREATE cLUSTER command. For more information on

other commands, see Console Commands.

Console - LIST SERVERS

Displays all active servers connected within a cluster.
This command was introduced in OrientDB version 2.2.

Syntax:

LIST SERVERS

Example:

e List the servers currently connected to the cluster:
orientdb> LIST SERVERS
CONFIGURED SERVERS

#|Name |Status|Connections|StartedOn |Binary |HTTP |UsedMemory
| FreeMemory | MaxMemory

B) fboocoocoocoo fboocoocoocooos fboocoocoooos Pdooocoocoooo Pooccocoocoo fbooocooooooo
P

0|no2 |ONLINE|® | 2015-10-
30...]192.168.0.6]192.168.0.6|80MB(8.80%) | 215MB(23%) | 916MB

1|nol |ONLINE|® |2015-10-30. ..]192.168.0.6(192.168.0.6|90MB(2.49%) | 195MB (5%)
|3.5GB

B, fbcocoocoocoo fboocoocoocooos fboocooooooos Pdoooccooooooo Pooccocooooo fboocooooooo
P

e Usethe prspLAy command to show information on a specific server:

orientdb> pispLAY 6

_____________ e e e
Name | node2
Status ONLINE
Connections | @
StartedOn | Fri Oct 30 21:41:07 CDT 2015

I
I
I
I
Binary | 192.168.0.6:2425
I
I
I
I

HTTP 192.168.0.6:2481
UsedMemory | 80,16MB (8,80%)
FreeMemory | 215,34MB (23,65%)
MaxMemory 910, 560MB
_____________ e g P

For more information on other commands, see Console Commands.

Console - LIST SERVER USERS

This feature was introduced in OrientDB version 2.2.

Displays all configured users on the server. In order to display the users, the current system user that is running the console must have
permissions to read the $ORINETDB_HOME/config/orientdb-server-config.xml configuration file. For more information, see OrientDB

Server Security.

Syntax:

LIST SERVER USERS

Example:

e List configured users on a server:
orientdb> LIST SERVER USERS

SERVER USERS
- 'root', permissions: *
- 'guest', permissions: connect, server.listDatabases, server.dblist

For more information, see

® SET SERVER USER

® DROP SERVER USER

For more information on other console commands, see Console Commands.

Console - CHECK DATABASE

Checks the integrity of a database. In the case the database contains graphs, their consistency is checked. To repair a database, use

Repair Database Command.
Syntax

CHECK DATABASE [--skip-graph] [-Vv]

e [--skip-graph] Skips the check of the graph

e [-v] Verbose mode
Examples

e Check a graph database:

orientdb> CHECK DATABASE

Check of graph 'plocal:/temp/testdb' is started ...

Scanning 1 edges (skipEdges=0)...

+ found corrupted edge E#17:0{out:#9:0,in:#11:0, test:true} v2 because incoming vertex (#11:0) does not contain the edge
Scanning edges completed

Scanning 710 vertices...

+ found corrupted vertex V#10:0{in_:[#17:0],name:Marko} v2 the edge should be removed from property in_ (ridbag)
Scanning vertices completed

Check of graph 'plocal:/temp/testdb' completed in 0 secs

scannedEdges.....: 1
edgesToRemove....: 1
scannedVertices..: 710
scannedLinks..... 12
linksToRemove....: 1

verticesToRepair.: 0
Check of storage completed in 296ms. without errors.

For more information on other commands, see Console Commands.

Console - COMMIT

Closes a transaction, committing the changes you have made to the database. Use the BEGIN command to open a transaction. If you
don't want to save the changes you've made, use the roLLBACk command to revert the database state back to the point where you

opened the transaction.
For more information, see Transactions.

Syntax

COMMIT

Example

e [Initiate a transaction, using the BEGIN command:
orientdb> Becin

Transaction 2 is running

e For the sake of example, attempt to open another transaction:
orientdb> Becin

Error: an active transaction is currently open (id=2). Commit or rollback
before starting a new one.

e Insert data into the class Account , usingan INSERT statement:
orientdb> INSERT INTO Account (name) VALUES ('tx test')

Inserted record 'Account#9:-2{name:tx test} vO' in 0,000000 sec(s).

e Commit the transaction to the database:
orientdb> commT

Transaction 2 has been committed in 4ms

e Display the new content, usinga SELECT query:

orientdb> SELECT FROM Account WHERE name LIKE 'tx%'

oo oo
| RID | name
oo oo
0 | #9:1107 | tx test
oo e,

1 item(s) found. Query executed in 0.041 sec(s).

When a transaction is open, all new records use a temporary Record ID that features negative numbers. After the commit, they have a

permanent Record ID that uses with positive numbers.

Commit

For more information, see

e Transactions
e BEGIN
® ROLLBACK

Console Commands

115

Console - CONFIG

Displays the configuration information on the current database, as well as whether it is local or remote.

Syntax

CONFIG

Examples
e Display the configuration of the current database:

orientdb> conFic

REMOTE SERVER CONFIGURATION:

PocoonoCooNo0Co000Co00000000000000So0 fbocococoocoooococoooooo00000R00000000 +
| NAME | VALUE |
PocooooCooNo0oo000c0000C0000000000So0 fbocococoocoooccoooocoo0000o000000000 +
| treemap.lazyUpdates | 300 |
| db.cache.enabled | false |
| file.mmap.forceRetry | 5 [
treemap.optimizeEntryPointsFactor	1.0
storage.keepOpen	true
treemap.loadFactor	0.7
file.mmap.maxMemory	110000000
network.http.maxLength	10000
storage.cache.size	5000
treemap.nodePageSize	1024
I I I	
treemap.entryPoints	30
T o e e e e e e oo +

You can change configuration variables displayed here using the conFic ST command. To display the value set to one

configuration variable, use the CONFIG GET command.

For more information on other commands, see Console Commands.

Console - CONFIG GET

Displays the value of the requested configuration variable.

Syntax

CONFIG GET <config-variable>

e <config-variable> Defines the configuration variable you want to query.
Examples

e Display the value to the tx.log.fileType configuration variable:
orientdb> CoNFIG GET tx.log.fileType

Remote configuration: tx.log.fileType = classic

You can display all configuration variables using the conFIc command. To change the values, use the conFIG SET command.

For more information on other commands, see Config Commands.

Console - CONFIG SET

Updates a configuration variable to the given value.

Syntax

CONFIG SET <config-variable> <config-value>

e <config-variable> Defines the configuration variable you want to change.

e <config-value> Defines the value you want to set.

Example

e Display the current value for tx.autoRetry :
orientdb> CONFIG GET tx.autoRetry

Remote configuration: tx.autoRetry = 1

Change the tx.autoretry valueto 5 :
orientdb> CoNFIG SET tx.autoRetry

Remote configuration value changed correctly.

Display new value:

orientdb> CONFIG GET tx.autoRetry

1
(¢)]

Remote configuration: tx.autoRetry

You can display all configuration variables with the conF16 command. You can view the current value on a configuration variable

using the CONFIG GET command.

For more information on other commands, see Console Commands

Console - CONNECT

Opens a database.

Syntax

CONNECT <database-url> <user> <password>

e <database-url> Defines the URL of the database you want to connect to. It uses the format <mode>:<path>
o <mode> Defines the mode you want to use in connecting to the database. It can be plocal or remote .
o <path> Defines the path to the database.

e <user> Defines the user you want to connect to the database with.

e <password> Defines the password needed to connect to the database, with the defined user.

Examples:

e Connect to a local database as the user admin , loading it directly into the console:
orientdb> CONNECT plocal:../databases/GratefulDeadConcerts admin my_admin_password

Connecting to database [plocal:../databases/GratefulDeadConcerts]...0K

e Connect to a remote database:
orientdb> CONNECT remote:192.168.1.1/GratefulDeadConcerts admin my_admin_password

Connecting to database [remote:192.168.1.1/GratefulDeadConcerts]...0K

For more information on other commands, see Console Commands.

Console - CREATE CLUSTER

Creates a new cluster in the current database. The cluster you create can either be physical or in memory. OrientDB saves physical

clusters to disk. Memory clusters are volatile, so any records you save to them are lost, should the server be stopped.
Syntax

CREATE CLUSTER <cluster-name> <cluster-type> <data-segment> <location> [<position>]

e <cluster-name> Defines the name of the cluster.
e <cluster-type> Defines whether the cluster is PHYSICAL or LOGICAL .
e <data-segment> Defines the data segment you want to use.
o DEFAULT Sets the cluster to the default data segment.
e <location> Defines the location for new cluster files, if applicable. Use DEFAULT to save these to the database directory.

e <position> Defines where to add new cluster. Use APPEND to create it as the last cluster. Leave empty to replace.

Example

e Create a new cluster documents :
orientdb> CREATE CLUSTER documents PHYSICAL DEFAULT DEFAULT APPEND

Creating cluster [documents] of type 'PHYSICAL' in database demo as last one...
PHYSICAL cluster created correctly with id #68

You can display all configured clusters in the current database using the cLusTERs command. To delete an existing cluster, use

the DROP CLUSTER command.

For more information on other commands, see Console Commands

Console - CREATE DATABASE

Creates and connects to a new database.

Syntax

CREATE DATABASE <database-url> [<user> <password> <storage-type> [<db-type>]] [-restore=<backup-path>]

e <database-url> Defines the URL of the database you want to connect to. It uses the format <mode>:<path>
o <mode> Defines the mode you want to use in connecting to the database. It can be PLOCAL or REMOTE .
o <path> Defines the path to the database.
e <user> Defines the user you want to connect to the database with.
e <password> Defines the password needed to connect to the database, with the defined user.
e <storage-type> Defines the storage type that you want to use. You can choose between PLocAL and MEMORY .
e <db-type> Defines the database type. You can choose between GRAPH and DoCUMENT . The default is GRAPH .
Examples

e Create a local database demo :

orientdb> CREATE DATABASE PLOCAL:/usr/local/orientdb/databases/demo

Creating database [plocal:/usr/local/orientdb/databases/demo]...
Connecting to database [plocal:/usr/local/orientdb/databases/demo]...0K
Database created successfully.

Current database is: plocal:/usr/local/orientdb/databases/demo

orientdb {db=demo}>

e Create aremote database trick :

orientdb> CREATE DATABASE REMOTE: /trick root

E30DD873203AAA245952278B4306D94E423CF91D569881B7CAD7DOB6D1A20CES PLOCAL
Creating database [remote:192.168.1.1/trick]...
Connecting to database [remote:192.168.1.1/trick]...0K
Database created successfully.

Current database is: remote:192.168.1.1/trick

orientdb {db=trick}>

To create a static database to use from the server, see Server pre-configured storage types .
To remove a database, see DRoP DATABASE . To change database configurations after creation, see ALTER DATABASE .

For more information on other commands, see Console Commands.

Incremental restore option

You can execute an incremental restore at creation time through the option -restore specifying as value the path where your backup is

placed. Let's suppose we want create a new fresh database "mydb" and restore data from a backup, located in /tmp/backup , performed

from another database in one shot. In this case we can type:

orientdb> create database remote:localhost/mydb root root plocal graph -restore=/tmp/backup

Creating database [remote:localhost/mydb] using the storage type [plocal]...
Connecting to database [remote:localhost/mydb] with user 'admin'...OK

Database created successfully.

Current database is: remote:localhost/mydb

For further details on incremental backup and restore you can refer to the page Incremental Backup and Restore.

Console - CREATE INDEX

Create an index on a given property. OrientDB supports three index algorithms and several index types that use these algorithms.

e SB-Tree Algorithm
o UNIQUE Does not allow duplicate keys, fails when it encounters duplicates.
o NOTUNIQUE Does allow duplicate keys.
o FULLTEXT Indexes to any single word of text.
o DICTIONARY Does not allow duplicate keys, overwrites when it encounters duplicates.
e Hash Index Algorithm
o UNIQUE_HASH_INDEX Does not allow duplicate keys, it fails when it encounters duplicates.
o NOTUNIQUE HASH_INDEX Does allow duplicate keys.
o FULLTEXT_HASH_INDEX Indexes to any single word.
o DICTIONARY Does not allow duplicate keys, it overwrites when it encounters duplicates.
e Lucene Engine
o LuceNe Full text index type using the Lucene Engine.

o spATIAL Spatial index using the Lucene Engine.
For more information on indexing, see Indexes.

Syntax

CREATE INDEX <index-name> [ON <class-name> (<property-names>)] <index-type> [<key-type>]

e <index-name> Defines a logical name for the index. Optionally, you can use the format <class-name>.<property-name> , to create

an automatic index bound to the schema property.
NOTE Because of this feature, index names cannot contain periods.
e <class-name> Defines the class to index. The class must already exist in the database schema.

e <property-names> Defines a comma-separated list of properties that you want to index. These properties must already exist in the
database schema.

e <index-type> Defines the index type that you want to use.

e <key-type> Defines the key that you want to use. On automatic indexes, this is auto-determined by reading the target schema
property where you create the index. When not specified for manual indexes, OrientDB determines the type at run-time during the

first insertion by reading the type of the class.
Examples

e Create an index that uses unique values and the SB-Tree index algorithm:

orientdb> CREATE INDEX jobs.job_id UNIQUE

The SQL creaTE INDEX page provides more information on creating indexes. M ore information on indexing can be found under

Indexes. Further SQL information can be found under sQL Commands .

For more information on other commands, see Console Commands

Console - CREATE LINK

Creates a link between two or more records of the Document type.

Syntax

CREATE LINK <link-name> FROM <source-class>.<source-property> TO <target-class>.<target-property>

e <link-name> Defines the logical name of the property for the link. When not expressed, it overwrites the <target-property>
field.

e <source-class> Defines the source class for the link.

e <source-property> Defines the source property for the link.

e <target-class> Defines the target class for the link.

e <target-property> Defines the target property for the link.
Examples

e Create a 1-n link connecting comments to posts:

orientdb> CREATE LINK comments FROM Comments.!PostId TO Posts.Id INVERSE

Understanding Links
Links are useful when importing data from a Relational database. In the Relational world, the database resolves relationships as foreign

keys. For instance, consider the above example where you need to show instances in the class Post as havinga 1-n relationship to

instances in class comment . That is, Post 1 ---> * Comment .

In a Relational database, where classes are tables, you might have something like this:

reldb> SeLECT * FROM Post;

| 16 | NoSQL movement |
| 206 | New OrientDB |

2 rows in (0.01 sec)

reldb> seLecT * FROM Comment;

Focmetmeaa - e, +
| Id | PostId | Text |
£ R P +
o	10	First
1	10	Second
21	10	Another
41	20	First again
82	20	Second Again
£ R P +

5 rows in sec (0.03 sec)

In OrientDB, you have a direct relationship in your object model. Navigation runs from Post to cComment and not vice versa, (as in

the Relational database model). For this reason, you need to create a link as INVERSE .

Create Link

For more information on SQL commands, see SQL. Commands.

For more information on other commands, see Console Commands.

125

Console - CREATE PROPERTY

Creates a new property on the given class. The class must already exist.

Syntax

CREATE PROPERTY <class-name>.<property-name> <property-type> [<linked-type>][<linked-class>]

e <class-name> Defines the class you want to create the property in.

e <property-name> Defines the logical name of the property.

e <property-type> Defines the type of property you want to create. Several options are available:
o <linked-type> Defines the container type, used in container property types.

o <linked-class> Defines the container class, used in container property types.
NOTE: There are several property and link types available.
Examples

e Create the property name on the class user , of the stringtype:

orientdb> CREATE PROPERTY User.name STRING

e Create a list of strings as the property tags in the class Profile , using an embedded list of the string type.

orientdb> CREATE PROPERTY Profile.tags EMBEDDEDLIST STRING

e Create the embedded map property friends inthe class Profile , link it to the class Profile .

orientdb> CREATE PROPERTY Profile.friends EMBEDDEDMAP Profile

This forms a circular reference.

To remove a property, use the DROP PROPERTY command.

Property Types

When creating properties, you need to define the property type, so that OrientDB knows the kind of data to expect in the field. There

are several standard property types available:

BOOLEAN INTEGER SHORT LONG
FLOAT DATE STRING EMBEDDED
LINK BYTE BINARY DOUBLE

In addition to these, there are several more property types that function as containers. These form lists, sets and maps. Using container

property types requires that you also define a link type or class.

EMBEDDEDLIST EMBEDDEDSET EMBEDDEDMAP

LINKLIST LINKSET LINKMAP

Link Types

The link types available are the same as those available as the standard property types:

BOOLEAN INTEGER SHORT LONG
FLOAT DOUBLE DATE STRING

BINARY EMBEDDED LINK BYTE

For more information, see SQL. Commands and Console Commands.

Console - DECLARE INTENT

Declares an intent for the current database. Intents allow you to tell the database what you want to do.

Syntax

DECLARE INTENT <intent-name>

e <intent-name> Defines the name of the intent. OrientDB supports three intents:
o L. Removes the current intent.
O MASSIVEINSERT

O MASSIVEREAD
Examples

e Declare an intent for a massive insert:

orientdb> DECLARE INTENT MASSIVEINSERT

e After the insert, clear the intent:

orientdb> DECLARE INTENT

For more information on other commands, see Console Commands.

Console - DELETE

Remove one or more records from the database. You can determine which records get deleted using the wHere clause.

Syntax

DELETE FROM <target-name> [LOCK <lock-type>] [RETURN <return-type>]
[WHERE <condition>*] [LIMIT <MaxRecords>] [TIMEOUT <timeout-value>]

e <target-name> Defines the target from which you want to delete records. Use one of the following target names:
o <class-name> Determines what class you want to delete from.
o CLUSTER:<cluster-name> Determines what cluster you want to delete from.
o INDEX:<index-name> Determines what index you want to delete from.
e Lock <lock-type> Defines how the record locks between the load and deletion. It takes one of two types:
o DEFAULT Operation uses no locks. In the event of concurrent deletions, the M VCC throws an exception.
o Recorp Locks the record during the deletion.
® RETURN <return-type> Defines what the Console returns. There are two supported return types:
o counT Returns the number of deleted records. This is the default return type.
o BEFORE Returns the records before the deletion.
® WHERE <condition> Defines the condition used in selecting records for deletion.
e LiMiT Defines the maximum number of records to delete.

e TIMeouT Defines the time-limit to allow the operation to run before it times out.

NOTE: When dealing with vertices and edges, do not use the standard SQL DELETE command. Doing so can disrupt graph

integrity. Instead, use the DELETE VERTEX or the DELETE EDGE commands.
Examples

e Remove all records from the class Profile , where the surname is unknown, ignoring case:

orientdb> DELETE FROM Profile WHERE surname.tolLowerCase() = 'unknown'

For more information on other commands, see SQL. Commands and Console Commands.

Console - DICTIONARY GET

Displays the value of the requested key, loaded from the database dictionary.
Syntax

DICTIONARY GET <key>

e <key> Defines the key you want to access.

Example

e Inadictionary of U.S. presidents, display the entry for Barack Obama:

orientdb> DICTIONARY GET obama

Class: Person id: 5:4 v.1

parent: null
children : [Person@5:5{parent:Person@5:4,children:null, name:Malia Ann,

surname:Obama, city:null}, Person@5:6{parent:Person@5:4,
children:null, name:Natasha, surname:0Obama, city:null}]
name : Barack
surname : Obama
city : City@-6:2{name:Honolulu}

You can display all keys stored in a database using the DICTIONARY KEYS command. For more information on indexes, see

Indexes.

For more information on other commands, see Console Commands.

Console - DICTIONARY KEYS

Displays all the keys stored in the database dictionary.

Syntax

DICTIONARY KEYS

Example

e Display all the keys stored in the database dictionary:
orientdb> DICTIONARY KEYS

Found 4 keys:

#0: key-148
#1: key-147
#2: key-146
#3: key-145

To load the records associated with these keys, use the pIcTIONARY GET command. For more information on indexes, see

Indexes.

For more information on other commands, see Console Commands.

Console - DICTIONARY PUT

Binds arecord to a key in the dictionary database, making it accessible to the DpICTIONARY GET command.

Syntax

DICTIONARY PUT <key> <record-id>

e <key> Defines the key you want to bind.

e <record-id> Defines the ID for the record you want to bind to the key.
Example

e In the database dictionary of U.S. presidents, bind the record for Barack Obama to the key obama :

orientdb> DICTIONARY PUT obama 5:4

Class: Person id: 5:4 v.1
parent : null
children : [Person@5:5{parent:Person@5:4,children:null, name:Malia Ann,
surname:Obama, city:null}, Person@5:6{parent:Person@5:4,
children:null, name:Natasha, surname:0Obama, city:null}]
name : Barack
surname : Obama
city : City@-6:2{name:Honolulu}

The entry obama=5:4 has been inserted in the database dictionary

To see all the keys stored in the database dictionary, use the DICTIONARY kEYys command. For more information on dictionaries

and indexes, see Indexes.

For more information on other commands, see Console Commands.

Console - DICTIONARY REMOVE

Removes the association from the database dictionary.

Syntax

DICTIONARY REMOVE <key>

e <key> Defines the key that you want to remove.
Example

e In adatabase dictionary of U.S. presidents, remove the key for Barack Obama:
orientdb> DICTIONARY REMOVE obama

Entry removed from the dictionary. Last value of entry was:

Class: Person id: 5:4 v.1
parent : null
children : [Person@5:5{parent:Person@5:4,children:null, name:Malia Ann,
surname:Obama, city:null}, Person@5:6{parent:Person@5:4,
children:null, name:Natasha, surname:0Obama, city:null}]
name : Barack
surname : Obama
city : City@-6:2{name:Honolulu}

You can display information for all keys stored in the database dictionary using the DICTIONARY KEy command. For more

information on dictionaries and indexes, see Indexes.

For more information on other commands, see Console Commands.

Console - DISCONNECT

Closes the currently opened database.

Syntax

DISCONNECT

Example

e Disconnect from the current database:
orientdb> bpIsconnECT

Disconnecting from the database [../databases/petshop/petshop]...0K

To connect to a database, see CONNECT . For more information on other commands, see Console Commands.

Console - DISPLAYS RECORD

Displays details on the given record from the last returned result-set.

Syntax
DISPLAY RECORD <record-number>
e <record-number> Defines the relative position of the record in the last result-set.

Example

e Query the database on the class Person to generate a result-set:

orientdb> SELECT FRoM Person

coodboccoo Pocoooooo Pbocoocoocosoo fpococoocosoooc frocococoosooos dbooccooo
| RID | PARENT | CHILDREN | NAME | SURNAME | City
cocodboccoo Pocoooooo dbocoooocosoo fbococooocoooc frococoocccoooo dbococooo
0 | 5:0 | null | null | Giuseppe | Garibaldi | -6:0
1] 5:1 | 5:0 | null | Napoleon | Bonaparte | -6:0
2| 5:2 | 5:3 | null | Nicholas | Churchill | -6:1
3| 5:3 | 5:2 | null | winston | Churchill | -6:1
4 | 5:4 | null | [2] | Barack | Obama | -6:2
5| 5:5 | 5:4 | null | Malia Ann | Obama | null
6 | 5:6 | 5:4 | null | Natasha | Obama | null
e Fommmm oo Fomm e oo oo R SR R R —— +--moo-

7 item(s) found. Query executed in 0.038 sec(s).

e With the result-set ready, display record number four in the result-set, (for M alia Ann Obama):

orientdb> DISPLAY RECORD 5

Class: Person id: 5:5 v.0
parent : Person@5:4{parent:null,children:[Person@5:5, Person@5:6],
name:Barack, surname:Obama, city:City@-6:2}
children : null
name : Malia Ann
surname : Obama
city : null

For more information on other commands, see Console Commands.

Console - DISPLAYS RAW RECORD

Displays details on the given record from the last returned result-set in a binary format.

Syntax
DISPLAY RAW RECORD <record-number>
e <record-number> Defines the relative position of the record in the last result-set.

Example

e Query the database on the class v to generate a result-set:

orientdb {db=GratefulDeadConcerts}> SeLECT song_type, name, performances FROM V LIMIT

----- R L & e S o L L P S
| @RID | @CLASS | song_type | name | performances
----- Poccoosodecnacooafoosonosooafooscnsooonconsonooonocoooiioosoooonanonas
0 | #9:1 | V | cover | HEY BO DIDDLEY | 5

1 | #9:2 | V | cover | IM A MAN | 1

2 | #9:3 | V | cover | NOT FADE AWAY | 531

3 | #9:4 | V | original | BERTHA | 394

4 | #9:5 | V | cover | GOING DOWN THE ROAD... | 293

5 | #9:6 | V | cover | MONA | 1

6 | #9:7 |V | null | Bo_Diddley | null

----- T T L T ey

LIMIT EXCEEDED: resultset contains more items not displayed (limit=6)
6 item(s) found. Query executed in 0.136 sec(s).

e Display raw record on the song "Hey Bo Diddley" from the result-set:

orientdb {db=GratefulDeadConcerts}> DISPLAY RAW RECORD ©

Raw record content. The size is 292 bytes, while settings force to print first 150

bytes:
Vsong_typenametypeperformancesout_followed_byout_written_byout_sung_byin_followed_byco
verHEY BO D

For more information on other commands available, see Console Commands.

Console - DROP CLUSTER

Removes a cluster from the database completely, deleting it with all records and caches in the cluster.
Syntax

DROP CLUSTER <cluster-name>

e <cluster-name> Defines the name of the cluster you want to drop.

NOTE: When you drop a cluster, the cluster and all records and caches in the cluster are gone. Unless you have made backups,

there is no way to restore the cluster after you drop it.
Examples

e Drop acluster person from the current, local database:
orientdb> DROP CLUSTER person
This removes both the cluster person and all records of the Person class in that cluster.

You can create a new cluster using the CREATE CLUSTER command.

For information on other commands, see SQL and Console commands.

Console - DROP DATABASE

Removes a database completely. If the database is open and a database name not given, it removes the current database.
Syntax

DROP DATABASE [<database-name> <server-username> <server-user-password>]

e <database-name Defines the database you want to drop. By default it uses the current database, if it's open.

e <server-username> Defines the server user. This user must have the privileges to drop the database.

e <server-user-password> Defines the password for the server user.

NOTE: When you drop a database, it deletes the database and all records, caches and schema information it contains. Unless you

have made backups, there is no way to restore the database after you drop it.
Examples

e Remove the current local database:

orientdb> DroP DATABASE

e Remove the database demo at localhost:

orientdb> DROP DATABASE remote:localhost/demo root root_password

You can create a new database using the CReATE DATABASE command. To make changes to an existing database, use the ALTER

DATABASE command.

For more information on other commands, see SQL and Console commands.

Console - DROP SERVER USER

Removes a user from the server. In order to do so, the current system user running the Console, must have permissions to write to the

$ORIENTDB_HOME/config/orientdb-server-config.xmL configuration file.

Syntax

DROP SERVER USER <user-name>

e <user-name> Defines the user you want to drop.
NOTE: For more information on server users, see OrientDB Server Security .
This feature was introduced in version 2.2.
Example

e Remove the user editor from the Server:
orientdb> DRrRoP SERVER USER editor

Server user 'editor' dropped correctly

To view the current server users, see the LIST SERVER USERS command. To create or upda[e d Server user, see the SET SERVER

USER command.

For more information on other commands, see Console Commands.

Console - EXPORT

Exports the current database to a file. OrientDB uses a JSON-based Export Format. By default, it compresses the file using the GZIP
algorithm.

With the 1vPorT command, this allows you to migrate the database between different versions of OrientDB without losing data.

If you receive an error about the database version, export the database using the same version of OrientDB that has generated the

database.

Bear in mind, exporting a database browses it, rather than locking it. While this does mean that concurrent operations can execute during
the export, it also means that you cannot create an exact replica of the database at the point when the command is issued. In the event

that you need to create a snapshot, use the BAckuP command.
You can restore a database from an export using the 1vPORT .

NOTE: While the export format is JSON, there are some constraints in the field order. Editing this file or adjusting its indentation

may cause imports to fail.
Syntax

By default, this command exports the full database. Use its options to disable the parts you don't need to export.

EXPORT DATABASE <output-file>
[-excludeAll]
[-includeClass=<class-name>*]
[-excludeClass=<class-name>*]
[-includeCluster=<cluster-name>*]
[-excludeCluster=<cluster-name>*]
[-includeInfo=<true|false>]
[-includeClusterDefinitions=<true|false>]
[-includeSchema=<true|false>]
[-includeSecurity=<true|false>]
[-includeRecords=<true|false>]
[-includeIndexDefinitions=<true|false>]
[-includeManualIndexes=<true|false>]
[-compressionLevel=<0-9>]
[-compressionBuffer=<bufferSize>]

e <output-file> Defines the path to the output file.

e -excludeAll Sets the export to exclude everything not otherwise included through command options

e -includeclass Export includes certain classes, specifically those defined by a space-separated list. In case you specify multiple
class names, you have to wrap the list between quotes, eg. -includeClass="Foo Bar Baz"

e -excludeclass Export excludes certain classes, specifically those defined by a space-separated list.

e -includecluster Export includes certain clusters, specifically those defined by a space-separated list.

e -excludecluster Export excludes certain clusters, specifically those defined by a space-separated list.

e -includeInfo Defines whether the export includes database information.

e -includeClusterbefinitions Defines whether the export includes cluster definitions.

e -includeschema Defines whether the export includes the database schema.

e -includesecurity Defines whether the export includes database security parameters.

e -includeRecords Defines whether the export includes record contents.

e -includeIndexbefinitions Defines whether the export includes the database index definitions.

e -includeManualIndexes Defines whether the export includes manual index contents.

e -compressionLevel Defines the compression level to use on the export, in a range between @ (no compression) and 9
(maximum compression). The default is 1 . (Feature introduced in version 1.7.6.)

e -compressionBuffer Defines the compression buffer size in bytes to use in compression. The default is 16kb. (Feature introduced

in version 1.7.6.)
Examples

e Export the current database, including everything:

orientdb> EXPORT DATABASE C:\temp\petshop.export
Exporting current database to: C:\temp\petshop.export...

Exporting database info...0K

Exporting dictionary...OK

Exporting schema...0K

Exporting clusters...

- Exporting cluster 'metadata' (records=11) -> OK
- Exporting cluster 'index' (records=0) -> OK

- Exporting cluster 'default' (records=779) -> OK
- Exporting cluster 'csv' (records=1000) -> OK

- Exporting cluster 'binary' (records=1001) -> 0K
- Exporting cluster 'person' (records=7) -> OK

- Exporting cluster 'animal' (records=5) -> OK

- Exporting cluster 'animalrace' (records=0) -> OK
- Exporting cluster 'animaltype' (records=1) -> OK
- Exporting cluster 'orderitem' (records=0) -> OK
- Exporting cluster 'order' (records=0) -> OK

- Exporting cluster 'city' (records=3) -> 0K
Export of database completed.

e Export the current database, including only its functions:

orientdb> EXPORT DATABASE functions.gz -includeClass=OFunction -includeInfo=FALSE
-includeClusterDefinitions=FALSE -includeSchema=FALSE

-includeIndexDefinitions=FALSE -includeManualIndexes=FALSE

e Alternatively, you can simplify the above by excluding all, then including only those features that you need. For instance, export
the current database, including only the schema:

orientdb> EXPORT DATABASE schema.gz -excludeALL -includeSchema=TRUE

Export API

In addition to the Console, you can also trigger exports through Java and any other language that runs on the JVM, by using the

ODatabaseExport class.

For example:

ODatabaseDocumentTx db = new ODatabaseDocumentTx('"plocal:/temp/mydb");
db.open("admin", "admin");

try{
OCommandOutputListener listener = new OCommandOutputListener() {
@override
public void {

System.out.print(iText);
3
3

ODatabaseExport export = new ODatabaseExport(db, "/temp/export", listener);
export.exportDatabase();
export.close();
} finally {
db.close();
3

https://github.com/orientechnologies/orientdb/blob/master/core/src/main/java/com/orientechnologies/orient/core/db/tool/ODatabaseExport.java

Export Database

For more information on backups and restores, imports and exports, see the following commands:

e IMPORT DATABASE
e BACKUP DATABASE
e RESTORE DATABASE

as well as the following pages:

e Export File Format

e oODatabaseExport Java Class

For more information on other commands, see Console Commands.

142

https://github.com/orientechnologies/orientdb/blob/master/core/src/main/java/com/orientechnologies/orient/core/db/tool/ODatabaseExport.java

Console - EXPORT RECORD

Exports the current record, using the requested format. In the event that you give a format that OrientDB does not support, it provides
a list of supported formats.

Syntax

EXPORT RECORD <format>

e <format> Defines the export format you want to use.
Examples
e Use SELECT to create a record for export:

orientdb> SELECT name, surname, parent, children, city FROM Person WHERE

name='Barack' AND surname='Obama'

cocodboccoo Pocoooooo Pbocoococoo Pococoooos focoocooccosoo dooccocoo
| RID | name | surname | parent | children | city
cocodboccoo Pocoooooo Pbococococoo Pococooooo focoocooccoooo dbooccocoo
0 | 5:4 | Barack | Obama | null | [5:5, 5:6] | -6:2
[Fommmm oo Fommm e oo Fommee oo [SRS +----o-

e Export JSON data from this record:

orientdb> EXPORT RECORD JSON

{
'name': 'Barack',
'surname': 'Obama',
'parent': null,
'children': [5:5, 5:6],
'city': -6:2

}

e Use a bad format value to determine what export formats are available on your database:

orientdb> EXPORT RECORD GIBBERISH

ERROR: Format 'GIBBERISH' was not found.
Supported formats are:

- json

- ORecordDocument2csv

For more information on other commands, see Console Commands.

Console - FREEZE DATABASE

Flushes all cached content to disk and restricts permitted operations to read commands. With the exception of reads, none of the

commands made on a frozen database execute. It remains in this state until you run the ReELEASE command.

Executing this command requires server administration rights. You can only execute it on remote databases. If you would like to freeze or

release a local database, use the opatabase.freeze() and oOpatabase.release() methods directly through the OrientDB API.

You may find this command useful in the event that you would like to perform backups on a live database. To do so, freeze the

database, perform a file system snapshot, then release the database. You can now copy the snapshot any where you want.
This works best when the backup doesn't take very long to run.

Syntax

FREEZE DATABASE

Example

e Freezes the current database:

orientdb> FREEZE DATABASE

To unfreeze a database, use the RELEASE DATABASE command.

For more information on other commands, see SQL and Console commands.

Console - GET

Returns the value of the requested property.

Syntax

GET <property-name>

e <property-name> Defines the name of the property.
Example

e Find the default limit on your database:
orientdb> GET LIMIT
limit = 20

To display all available properties configured on your database, use the PROPERTIES command.

For more information on other commands, see Console Commands.

Console - GREMLIN

Executes commands in the Gremlin language from the Console.

Gremlin is a graph traversal language. OrientDB supports it from the Console, API and through a Gremlin shell launched from
$ORIENTDB_HOME/bin/gremlin.sh .

Syntax

GREMLIN <command>

e <command> Defines the commands you want to know.

NOTE: OrientDB parses Gremlin commands as multi-line input. It does not execute the command until you type end . Bear in

mind, the end here is case-sensitive.
Examples
e Create a vertex using Gremlin:
orientdb> gremlin
[Started multi-line command. Type just 'end' to finish and execute.]
orientdb> vi = g.addvertex();
orientdb> end

v[#9:0]

Script executed in 0,100000 sec(s).

For more information on the Gremlin language, see Gremlin. For more information on other commands, see Console Commands.

Console - IMPORT

Imports an exported database into the current one open. Import process doesn't lock the database, so any concurrent operations are

allowed, but they could interfer in the import process causing errors.

The input file must use the JSON Export Format, as generated by the ExrorT command. By default, this file is compressed using the
GZIP algorithm.

With ExporT , this command allows you to migrate between releases without losing data, by exporting data from the old version and

importing it into the new version.

Syntax

IMPORT DATABASE <input-file> [-format = <format>]
[-preserveClusterIDs = <true|false>]
[-deleteRIDMapping = <true|false>]
[-merge = <true|false>]
[-migrateLinks = <true|false>]
[-rebuildIndexes = <true|false>]

e <format> Is the input file format. If not specified, OrientDB tries to recognize it. The available formats are (since v2.2.8):
o orientdb, the OrientDB export file format
o graphml, for Graph XML
o graphson, for Graph JSON

e <inputy-file> Defines the path to the file you want to import.

e -preserveclusterIds Defines whether you want to preserve cluster ID's during the imp ort. When turned off, the import creates
temporary cluster ID's, which can sometimes fail. This option is only valid with PLocal storage.

e -deleteRIDMapping Defines whether you want to preserve the dictionary index used by the import to map old RIDs to new RIDs.
The index name is ___exportImportRIbMap and you could use in your application. By default the index is removed after the import.

e -merge Defines whether you want to merge the import with the data already in the current database. When turned off, the default,
the import overwrites current data, with the exception of security classes, (0ORole , ouser , OIdentity), which it always
preserves. This feature was introduced in version 1.6.1.

e -migrateLinks Defines whether you want to migrate links after the import. When enabled, this updates all references from the old
links to the new Record ID's. By default, it is enabled. Advisable that you only turn it off when merging and you're certain no other
existent records link to those you're importing, This feature was introduced in version 1.6.1.

e -rebuildindexes Defines whether you want to rebuild indexes after the import. By default, it does. You can set it to false to
speed up the import, but do so only when you're certain the import doesn't affect indexes. This feature was introduced in version
1.6.1.

Example

e Import the database petshop.export :

https://en.wikipedia.org/wiki/GraphML
https://github.com/tinkerpop/blueprints/wiki/GraphSON-Reader-and-Writer-Library

orientdb> IMPORT DATABASE C:/temp/petshop.export -preserveClusterIDs=true

Importing records...

- Imported records into the cluster 'internal': 5 records

- Imported records into the cluster 'index': 4 records

- Imported records into the cluster 'default': 1022 records

- Imported records into the cluster 'orole': 3 records

- Imported records into the cluster 'ouser': 3 records

- Imported records into the cluster 'csv': 100 records

- Imported records into the cluster 'binary': 101 records

- Imported records into the cluster 'account': 1005 records

- Imported records into the cluster 'company': 9 records

- Imported records into the cluster 'profile': 9 records

- Imported records into the cluster 'whiz': 1000 records

- Imported records into the cluster 'address': 164 records

- Imported records into the cluster 'city': 55 records

- Imported records into the cluster 'country': 55 records

- Imported records into the cluster 'animalrace': 3 records

- Imported records into the cluster 'ographvertex': 102 records
- Imported records into the cluster 'ographedge': 101 records
- Imported records into the cluster 'graphcar': 1 records

For more information on backup S, restores, and exports, see: BACKUP , RESTORE and EXPORT C()mmands, and the

opatabaseImport Java class. For the JSON format, see Export File Format.

For more information on other commands, see Console Commands.

Import API

In addition to the Console, you can also manage imports through the Java API, and with any language that runs on top of the JVM,

using the opatabaseImport class.

ODatabaseDocumentTx db = new ODatabaseDocumentTx('"plocal:/temp/mydb™);

db.open("admin", "admin");
try{
OCommandOutputListener listener = new OCommandOutputListener() {
@override
public void onMessage {
System.out.print(iText);
3
}

ODatabaseImport import = new ODatabaseImport(db, "/temp/export/export.json.gz", listener);
import.importDatabase();
import.close();
} finally {
db.close();
3

Troubleshooting

Validation Errors

Occasionally, you may encounter validation errors during imports, usually shown as an ovalidationException exception. Beginning
with version 2.2, you can disable validation at the database-level using the ALTER pATABASE command, to allow the import to go
through.

1. Disable validation for the current database:

https://github.com/orientechnologies/orientdb/blob/master/core/src/main/java/com/orientechnologies/orient/core/db/tool/ODatabaseImport.java
https://github.com/orientechnologies/orientdb/blob/master/core/src/main/java/com/orientechnologies/orient/core/db/tool/ODatabaseImport.java

orientdb> ALTER DATABASE validation

2. Import the exported database:

orientdb> IMPORT DATABASE /path/to/my_data.export -preserveClusterIDs=TRUE

3. Re-enable validation:

orientdb> ALTER DATABASE validation

Cluster ID's

During imports you may occasionally encounter an error that reads: Imported cluster 'XXX' has id=6 different from the original: 5 .
Typically occurs in databases that were created in much older versions of OrientDB. You can correct it using the brop cLAss on the

class or1Ds , then attempting the import again.

1. Import the database:

orientdb> IMPORT DATABASE /path/to/old data.export

Importing records...

- Creating cluster 'company'...Error on database import happened just before line
16, column 52 com.orientechnologies.orient.core.exception.OConfigurationException:
Imported cluster 'company has id=6 different from the original: 5 at
com.orientechnologies.orient.core.db.tool.0ODatabaseImport.importClusters(

ODatabaseImport.java:500) at
com.orientechnologies.orient.core.db.tool.0ODatabaseIMport.importDatabase(

ODatabaseImport.java:121)

2. Drop the orips class:

orientdb> Dbrop cLASS ORIDs

3. Import the database:

orientdb> IMPORT DATABASE /path/to/old_data.export

The database now imports without error.

Console - INDEXES

Displays all indexes in the current database.

Syntax

INDEXES

Example

e Display indexes in the current database:

orientdb {db=GratefulDeadConcerts}> INDEXES

INDEXES

-------------- PocoooocoooooticooocoodPo o000 s oMo coo00 oo
NAME | TYPE | CLASS | FIELDS | RECORDS
-------------- PbocoocoocoooooiiooooooodPo o000 ooiPoccoo00 oo
dictionary | DICTIONARY | | | 0
Group.Grp_Id | UNIQUE | Group | Grp_Id | 1
ORole.name | UNIQUE | ORole | name | 3
OUser .name | UNIQUE | Ouser | name | 4
-------------- g
TOTAL = 4 8

For more information on other commands, see Console Commands.

Console - INFO

Displays all information on the current database.

Syntax

INFO

Example

e Display information on database petshop :
orientdb {db=petshop}> 1nro

Current database: ../databases/petshop/petshop

CLUSTERS:
------------ PocoooodPoooocccoooodbscoocsoooc
NAME | ID | TYPE | ELEMENTS
------------ PocoooodPoooocccoooodbscoocsoooc
metadata | 0 | Physical | 11
index | 1 | Physical | 0
default | 2 | Physical | 779
csv | 3 | Physical | 1000
binary | 4 | Physical | 1001
person | 5 | Physical | 7
animal | 6 | Physical | 5
animalrace | -2 | Logical | 0
animaltype | -3 | Logical | 1
orderitem | -4 | Logical | 0
order | -5 | Logical | 0
city | -6 | Logical | 3
------------ B T pepupupupp
TOTAL 2807
CLASSES
------------ B T pupupupup
NAME | ID | CLUSTERS | ELEMENTS
------------ dhocoodfocoooooooooodPoooc o000
Person | © | person | 7
Animal | 1 | animal | 5
AnimalRace | 2 | AnimalRace | 0
AnimalType | 3 | AnimalType | 1
OrderItem | 4 | OrderItem | 0
Order | 5 | Order | 0]
City | 6 | City | 3
------------ B T
TOTAL 16

For more information on other commands, see Console Commands.

Console - INFO CLASS

Displays all information on given class.

Syntax
INFO CLASS <class-name>
e <class-name> Defines what class you want information on.

Example

e Display information on class profile

orientdb> 1INFO cLASS Profile

Default cluster......: profile (id=10)
Supported cluster ids: [10]
Properties:

-------- T T T = Sy
NAME | ID | TYPE | LINK TYPE | INDEX | MANDATORY | NOT NULL | MIN | MAX
-------- L T gy U Sy
nick | 3 | STRING | null | | false | false | 3 | 30
name | 2 | STRING | null |NOTUNIQUE| false | false | 3 | 30
surname| 1 | STRING | null | | false | false | 3 | 30

| | | ... | ... | ... | | | ...
photo | © | TRANSIENT| null | | false | false |
-------- e L g

For more information on other commands, see Console Commands.

Console - INFO PROPERTY

Displays all information on the given property.

Syntax

INFO PROPERTY <class-name>.<property-name>

e <class-name> Defines the class to which the property belongs.

e <property-name> Defines the property you want information on.
Example

e Display information on the property name in the class ouser :
orientdb> INFO PROPERTY OUser.name

PROPERTY 'OUser .name'

TY[®800aa0a000000aanao STRING
Mandatory............: true
Not null.............: true
Read only............: false
Default value........: null
Minimum value........: null
Maximum value........: null
REGEXP........vevvvw..t null
Collate..............: {OCaseInsensitiveCollate : name = ci}
Linked class.........: null
Linked type..........: null

INDEXES (1 altogether)

____________________ gy
NAME | PROPERTIES
____________________ e e e e - -
Ouser .name | name

____________________ e e e e - -

For more information on other commands, see Console Commands.

Console - INSERT

Inserts a new record into the current database. Remember, OrientDB can work in schema-less mode, meaning that you can create any
field on the fly.

Syntax

INSERT INTO <<class-name>|CLUSTER:<cluster-name>> (<field-names>) VALUES (<field-values>)

e <class-name> Defines the class you want to create the record in.
® CLUSTER:<cluster-name> Defines the cluster you want to create the record in.
e <field-names> Defines the fields you want to add the records to, in a comma-separated list.

e <field-values> Defines the values you want to insert, in a comma-separated list.

Examples

e Insert a new record into the class Profile , usingthe name Jay and surname Miner :
orientdb> 1INSERT INTO Profile (name, surname) VALUES ('Jay', Miner')

Inserted record in 0,060000 sec(s).

e Insert a new record into the class Employee , while defining a relationship:

orientdb> INSERT INTO Employee (name, boss) VALUES ('Jack', 11:99)

e Insert a new record, adding a collection of relationships:

orientdb> INSERT INTO Profile (name, friends) VALUES ('Luca', [10:3, 10:4])

For more information on other commands, see SQL and Console commands.

Console - 3Js

Executes commands in the Javascript language from the Console. Look also Javascript Command.

Syntax

JS <commands>

e <commands> Defines the commands you want to execute.

Interactive Mode You can execute a command in just one line (JS print('Hello world!')) or enable the interactive input by just
executing Js and then typing the Javascript expression as multi-line inputs. It does not execute the command until you type end .

Bear in mind, the end here is case-sensitive.
Examples

e Execute a query and display the result:

orientdb> js

[Started multi-line command. Type just 'end' to finish and execute.]
orientdb> var r = db.query('select from ouser');

orientdb> for(var i=e;i

orientdb> print(r[i]);

orientdb> }
orientdb> end

OUser#5:0{roles:[1], status:ACTIVE, password: {PBKDF2WithHmacSHA256} CO8CEOF5160EA4050B8F10EDBB86FO6EBOA2EE82DF73A340 : BC1B604
0727C1E11E3A961A1B2A49615C96938710AF17ADD: 65536, name :admin} vi1
OUser#5:1{name:reader, password: {PBKDF2WithHmacSHA256}41EF9B675430D215E0970AFDEB735899B6665DF44A29FE98 : 5BC48B2D20752B12B5E
32BE1F22C6C85FF7CCBEFB318B826: 65536, status:ACTIVE, roles: [1]} vi
OUser#5:2{name:writer, password: {PBKDF2WithHmacSHA256} FAGAD7301EA2DB371355EB2855D63F4802F13858116AB82E : 18B8077E1E63A45DBOA
3347F91EO3E4D2218EA16E5100105: 65536, status:ACTIVE, roles: [1]} vi

Client side script executed in 0.142000 sec(s). Value returned is: null

For more information on the Javascript execution, see Javascript Command. For more information on other commands, see

Console Commands.

Console - Jss

Executes commands on OrientDB Server in the Javascript language from the Console. Look also Javascript Command.
Syntax

JSS <commands>

e <commands> Defines the commands you want to execute.

Interactive Mode You can execute a command in just one line (JSs print('Hello World!')) or enable the interactive input by just
executing Jss and then typing the Javascript expression as multi-line inputs. It does not execute the command until you type end .

Bear in mind, the end here is case-sensitive.
Examples

e Execute a query and display the result:

orientdb> jss
[Started multi-line command. Type just 'end' to finish and execute.]

orientdb> var r = db.query('select from ouser');

orientdb> for(var i=0;i
orientdb> print(r[i]);
orientdb> }

orientdb> end

Server side script executed in sec(s). Value returned is:

In this case the output will be displayed on the server console.

For more information on the Javascript execution, see Javascript Command. For more information on other commands, see

Console Commands.

Console - LIST DATABASES

Displays all databases hosted on the current server. Note that this command requires you connect to the OrientDB Server.

Syntax

LIST DATABASES

Example

e Connect to the server:

orientdb> CONNECT REMOTE:localhost admin admin_password

e List the databases hosted on the server:
orientdb {server=remote:localhost/}> LIST DATABASES
Found 4 databases:
* ESA (plocal)
* Napster (plocal)

* Homeland (plocal)
* GratefulDeadConcerts (plocal)

For more information on other commands, see Console Commands.

Console - LIST CONNECTIONS

Displays all active connections to the OrientDB Server. Command introduced in version 2.2. The connections as per server, so you

should connect to the server, not to the database.

Syntax

LIST CONNECTIONS

Permissions
In order to enable a user to execute this command, you must add "server.info" as resource to the server user.
Example

e List the current connections to the OrientDB Server:

orientdb {server=remote:localhost/}> LIST CONNECTIONS

soofhoccoffccoacosoonosos ocooso Pocooccooscnoooonsos Pocoocsos focoos foccocoos ocoocoos
| ID |REMOTE_ADDRESS|PROTOC|LAST_OPERATION_ON |DATABASE|USER |COMMAND |TOT_REQS
U oo o - P +o-mmmo- - +----- Fommmmo oo Fommmo oo
0 | 17 |/127.0.0.1 |binary|2015-10-12 19:22:34] - | - |info | 1
1| 16 |/127.0.0.1 |binary|1970-01-01 01:00:00] - | - | - | ©
5|1 |/127.0.0.1 |http [1970-01-01 00:59:59|pokec |admin|Listen | 32
S Uy oo - S Hommmmm o= +----- Fommmma oo Fommmm oo

For more information on other commands, see Console Commands.

Console - LOAD RECORD

Loads a record the given Record ID from the current database.

Syntax

LOAD < -id>

e <record-id Defines the Record ID of the record you want to load.
In the event that you don't have a Record ID, execute a query to find the one that you want.
Example

o Load the record for #5:5 :

orientdb> Loap #5:

Class: Person 1id: #5:5 v.0
parent : Person@5:4{parent:null,children:[Person@5:5, Person@5:6], name:Barack,
surname:Obama, city:City@-6:2}
children : null
name : Malia Ann
surname : Obama
city : null

For more information on other commands, see Console Commands.

Console - LOAD SCRIPT (from 2.2.18)

Loads a sql script from the given path and executes it.

Syntax

LOAD SCRIPT <script path>

Example

e Load a script from an absolute path:

orientdb> LoAD SCRIPT /path/to/scripts/data.osql

e Launch the console in batch mode and load script to a remote database:

$ SORIENTDB_HOME/bin/console.sh "CONNECT REMOTE:localhost/demo;LOAD SCRIPT /path/to/scripts/data.osql"

For more information on other commands, see Console Commands.

Console - PROFILER

Controls the Profiler.

Syntax

PROFILER ON|OFF|DUMP |RESET

e on Turn on the Profiler and begin recording,
e oFf Turn off the Profiler and stop recording.
e puvp Dump the Profiler data.

e RESET Reset the Profiler data.
Example

e Turn the Profiler on:
orientdb> PROFILER ON

Profiler is ON now, use 'profiler off' to turn off.

e Dump Profiler data:

orientdb> PROFILER DUMP

For more information on other commands, see Console Commands.

Console - PROPERTIES

Displays all configured properties.

Syntax

PROPERTIES

Example

e List configured properties:

orientdb> PROPERTIES

PROPERTIES:

limit

backupBufferSize
backupCompressionLevel
collectionMaxItems
verbose

width

maxBinaryDisplay

debug

ignoreErrors

20
1048576
9

10

To change a property value, use the seT command.

For more information on other commands, see Console Commands.

Console - RELEASE DATABASE

Releases database from a frozen state, from where it only allows read operations back to normal mode. Execution requires server

administration rights.

You may find this command useful in the event that you want to perform live database backups. Run the FRreeze pDATABASE command to

take a snapshot, you can then copy the snapshot anywhere you want. Use such approach when you want to take short-term backups.

Syntax

RELEASE DATABASE

Example

e Release the current database from a freeze:

orientdb> RELEASE DATABASE

To freeze a database, see the FREEZE DATABASE command.

For more information on other commands, see Console and SQL commands.

Console - RELOAD RECORD

Reloads a record from the current database by its Record ID, ignoring the cache.
You may find this command useful in cases where external applications change the record and you need to see the latest update.

Syntax

RELOAD RECORD <record-id>

e <record-id> Defines the unique Record ID for the record you want to reload. If you don't have the Record ID, execute a query

first.
Examples

e Reload record with the ID of 5:5 :

orientdb> RELOAD RECORD 5:5

Class: Person 1id: 5:5 v.0
parent : Person@5:4{parent:null,children:[Person@5:5, Person@5:6],
name:Barack, surname:0Obama, city:City@-6:2}
children : null
name : Malia Ann
surname : Obama
city : null

For more information on other commands, see Console Commands.

Console - REPAIR DATABASE

Repairs a database. To check if a database needs to be repaired, you can use the Check Database Command.

Syntax

REPAIR DATABASE [--fix-graph [-skipVertices=<vertices>] [-skipEdges=<edges>]]
[--fix-1inks]
[--fix-ridbags]
[--fix-bonsai]

[-v]

e [--fix-graph] Fixes the database as graph. All broken edges are removed and all corrupted vertices repaired. This mode takes the
following optional parameters:
o -skipVertices=<vertices> , where <vertices> are the number of vertices to skip on repair.
o -skipEdges=<edges> , where <edges> are the number of edges to skip on repair.
e [--fix-links] Fixes links. It removes any reference to not existent records. The optional [-v] tells to print more information.
e [--fix-ridbags] Fixes the ridbag structures only (collection of references).
e [--fix-bonsai] Fixes the bonsai structures only (internal representation of trees)

e [-v] Verbose mode
Examples

e Repair a graph database:

orientdb> REPAIR DATABASE --fix-graph

Repair of graph 'plocal:/temp/demo' is started ...
Scanning 26632523 edges (skipEdges=0)...

+ edges: scanned 100000, removed 0 (estimated remaining time 10 secs)
+ edges: scanned 200000, removed 0 (estimated remaining time 9 secs)
+ deleting corrupted edge friend#40:22044{out:#25:1429,1in:#66:1,enabled:true} v7 because missing incoming vertex (#66:1)

Scanning edges completed

Scanning 32151775 vertices...

+ vertices: scanned 100000, repaired 0 (estimated remaining time 892 secs)

+ vertices: scanned 200000, repaired 0 (estimated remaining time 874 secs)

+ vertices: scanned 300000, repaired 0 (estimated remaining time 835 secs)

+ repaired corrupted vertex Account#25:961{out_friend:[],dateUpdated:Wed Aug 12 19:00:00 CDT 2015,createdOn:Wed Aug 12 19:00
100 CDT 2015} v4

+ vertices: scanned 32100000, repaired 47 (estimated remaining time 2 secs)

Scanning vertices completed
Repair of graph 'plocal:/temp/demo' completed in 2106 secs

scannedEdges.: 1632523
removedEdges.: 129
scannedVertices..: 32151775
scannedLinks.....: 53264852
removedLinks.....: 64

repairedVertices.: 47

For more information on other commands, see Console Commands.

Console - RESTORE DATABASE

Restores a database from a backup. It must be done against a new database. It does not support restores that merge with an existing

database. If you need to backup and restore to an existing database, use the ExPORT DATABASE and IMPORT DATABASE commands.
OrientDB Enterprise Edition version 2.2 and major, support incremental backup.
To create a backup file to restore from, use the Backup DATABASE command.

Syntax

RESTORE DATABASE <backup-file>|<incremental-backup-directory>

e <backup-file> Defines the database file you want to restore.
e <incremental-backup-directory> Defines the database directory you want to restore from an incremental backup. Available only

in OrientDB Enterprise Edition version 2.2 and major.
Example of full restore

e Create a new database to receive the restore:

orientdb> CREATE DATABASE PLOCAL:/tmp/mydb

e Restore the database from the mydb.zip backup file:
orientdb {db=/tmp/mydb}> RESTORE DATABASE /backups/mydb.zip
Example of incremental restore

This is available only in OrientDB Enterprise Edition version 2.2 and major.

e Open a database to receive the restore:

orientdb> CONNECT PLOCAL:/tmp/mydb

e Restore the database from the /backup backup directory:

orientdb {db=/tmp/mydb}> RESTORE DATABASE /backup

For more information, see the BACKUP DATABASE , EXPORT DATABASE , IMPORT DATABASE commands. For more information on

other commands, see Console Commands.

Restore API

In addition to the console commands, you can also execute restores through the Java API or with any language that can run on top of the

JVM using the restore() method against the database instance.

db.restore(in, options, callable, listener);

e in Defines the Inputstream used to read the backup content. Uses a FileInputStream to read the backup content from disk.
e options Defines backup options, such as Map<string, object> object.

e callable Defines the callback to execute when the database is locked.

e listener Listener called for backup messages.

e compressionLevel Defines the Zip Compression level, between o for no compression and 9 for maximum compression. The

greater the compression level, the smaller the final backup content and the greater the CPU and time it takes to execute.

e huffersize Buffer size in bytes, the greater the buffer the more efficient the compression.

Example

ODatabaseDocumentTx db = new ODatabaseDocumentTx('"plocal:/temp/mydb™);
db.open("admin", "admin");

try{
OCommandOutputListener listener = new OCommandOutputListener() {
@override
public void onMessage {
System.out.print(iText);
}
iy

InputStream out = new FileInputStream("/temp/mydb.zip");
db.restore(in,null, null,listener);

} finally {
db.close();

Console - ROLLBACK

Aborts a transaction, rolling the database back to its save point.

Syntax

BEGIN

For more information on transactions, see Transactions. To initiate a transaction, use the BEGIN command. To save changes, see

coMMIT command.
Example

e Initiate a new transaction:
orientdb> BecINn

Transaction 1 is running

e Attempt to start a new transaction, while another is open:
orientdb> BecINn

Error: an active transaction is currently open (id=1). Commit or rollback before

starting a new one.

e Make changes to the database:
orientdb> INSERT INTO Account (name) VALUES ('tx test')

Inserted record 'Account#9:-2{name:tx test} vO' in 0,004000 sec(s).

e View changes in database:

orientdb> SELECT FROM Account WHERE name LIKE 'tx%'

oo e o e
| RID | name

e o e e
0 | #9:-2 | tx test

e o e e

1 item(s) found. Query executed in 0.076 sec(s).

e Abort the transaction:
orientdb> RroLLBACK

Transaction 1 has been rollbacked in 4ms

e View rolled back database:

Rollback

orientdb> SELECT FROM Account WHERE name LIKE 'tx%'

0 item(s) found. Query executed in 0.037 sec(s).

For more information on other commands, see Console Commands.

169

Console - SET

Changes the value of a property.

Syntax

SET <property-name> <property-value>

e <property-name> Defines the name of the property
e <property-value> Defines the value you want to change the property to.

Example

e Change the LIMIT property to one hundred:
orientdb> ser LImMIT

Previous value was: 20
limit = 100

To display all properties use the PRoPERTIES command. To display the value of a particular property, use the GET command.

For more information on other commands, see Console Commands.

Console - SET SERVER USER

Creates a server user. If the server user already exists, it updates the password and permissions.

In order to create or modify the user, the current system user must have write permissions on the $ORIENTDB_HOME/config/orientdb-

server-config.xml configuration file.

Syntax

SET SERVER USER <user-name> <user-password> <user-permissions>

e <user-name> Defines the server username.
e <user-password> Defines the password for the server user.

e <user-permissions> Defines the permissions for the server user.

For more information on security, see OrientDB Server Security. Feature introduced in version 2.2.

Example

e Create the server user editor , give it all permissions:
orientdb> SET SERVER USER editor my_password *

Server user 'editor' set correctly

To display all server users, see the LIST SERVER USERS command. To remove a server user, see DROP SERVER USER command.

For more information on other commands, see Console Commands.

Console - SLEEP

Pauses the console for the given amount a time. You may find this command useful in working with batches or to simulate latency.

Syntax

SLEEP <time>

e <time> Defines the time the Console should pause in milliseconds.
Example

e Pause the console for three seconds:

orientdb {server=remote:localhost/}> sLEEP 3000

For more information on other commands, see Console Commands.

Upgrading

OrientDB uses the Semantic Versioning System (http:/semver.org), where the version numbers follow this format
MAJOR.MINOR.PATCH, Here are the meanings of the increments:

e MAJOR version entails incompatible API changes,
e MINOR version entails functionality in a backward-compatible manner

e PATCH version entails backward-compatible bug fixes.

So between PATCH versions, the compatibility is assured (example 2.1.0 -> 2.1.8). Between MINOR and M AJOR versions, you may
need to export and re-import the database. To find out if your up grade must be done over exporting and importing the database, see

below in the column "Database":

Compatibility Matrix

FROM TO Guide Blueprints Database Binary HITP
Protocol Protocol
2.1.x 2.2.x Release 2.2.x Final v2.6.0 Automatic 34 10
2.0.x 2.1.x Release 2.1.x Final v2.6.0 Automatic 30 10
1.7.x 2.0.x 12\4(;%‘(ation-from-1.7.xto- Final v2.6.0 Automatic = 25 10
1.6.x 1.7.x];471@;3“0“'“0‘“'1 bxctos Final v2.5.0 Automatic 20,21 10
1.5.x 1.6.x Migration-from-1.5.x-to- Changed Automatic 18,19 10
1.6.x v2.5.x
1.4.x 1.5.x vl attor-fion 1 e - Clieigzzd Automatic 16, 17 10
1.5.x v2.4.x
1.3.x 1.4.x Migration-from-1.3.x-to- Changed Automatic 14,15 n.a.
1.4.x v2.3.X
Instructions

The easiest way to upgrade a database from one version of OrientDB to the next is to plan ahead for future up grades from the beginning.
The recommended strategy is to store databases separately from the OrientDB installation, often on a separate data volume.

As an example, you might have a data volume, called /data , with a databases directory under that where all of your database

directories will be stored.

/data/databases:
MyDB
WebAppDB

New Databases

If you're just starting with OrientDB or just creating new databases, from the OrientDB installation directory, you can remove the

databases directory and then create a symbolic link to the /data/databases directory previously created.
M ake sure OrientDB is not running.
On a Linux system, you could call rm -rf databases to remove the databases directory and recursively remove all sub-directories.
DO NOT issue that command if you have any live databases that have not been moved!

Once the databases directory is removed, create a symbolic link to the /data/databases directory.

http://semver.org

On a Linux system, you could call 1n -s /data/databases ./databases .

On a Windows system, you can use mklink /d .\databases d:\data\databases , assuming your data volume resides as the d: drive in

Windows. The /d switch creates a directory symbolic link. You can use /j instead to create a directory junction.

You should now be able to start OrientDB and create new databases that will reside under /data/databases .

Upgrading Symbolic-Linked Databases

If you used a similar symbolic link scheme as suggested in the prior section, up grading OrientDB is very easy. Simply follow the same
instructions to remove the databases directory from the NEW OrientDB installation directory and then create a symbolic link to

/data/databases .

Upgrading Existing Databases

If you've been running OrientDB in the standard way, with the databases directory stored directly under the OrientDB installation

directory, then you have two options when upgrading to a newer version of OrientDB.

1. You can move your database directories to the databases directory under the new installation.

2. You can move your database directories to an external location and then set-up a symbolic link from the new installation.

Moving Databases to a New Installation

M ake sure OrientDB is not running. From the old OrientDB installation location, move each database directory under databases to the

databases directory in the new OrientDB installation.

Moving Databases to an External Location

M ake sure OrientDB is not running. Using the earlier example of /data/databases , from the old OrientDB installation location, move

each database directory under databases tothe /data/databases location.

Now, follow the instructions under New Databases to create a symbolic link from within the new OrientDB installation to the

/data/databases directory.

External Storage Advantages

If you store your databases separately from the OrientDB installation, not only will you be able to up grade more easily in the future,
but you may even be able to improve performance by using a data volume that is mounted on a disk that's faster than the volume where

the main installation resides.

Also, many cloud-based providers support creating snapshots of data volumes, which can be a useful way of backing up all of your

databases.

Backward Compatibility

OrientDB supports binary compatibility between previous releases and latest release. Binary compatibility is supported at least

between last 2 minor versions.

For example, lets suppose that we have following releases 1.5, 1.5.1, 1.6.1, 1.6.2, 1.7, 1.7.1 then binary compatibility at least between
1.6.1, 1.6.2, 1.7, 1.7.1 releases will be supported.

If we have releases 1.5, 1.5.1, 1.6.1, 1.6.2, 1.7, 1.7.1, 2.0 then binary compatibility will be supported at least between releases 1.7, 1.7.1,
2.0.

Binary compatibility feature is implemented using following algorithm:

1. When storage is opened, version of binary format which is used when storage is created is read from storage configuration.

2. Factory of objects are used to present disk based data structures for current binary format is created.

Only features and database components which were exist at the moment when current binary format was latest one will be used. It
means that you can not use all database features available in latest release if you use storage which was created using old binary format
version. It also means that bugs which are fixed in new versions may be (but may be not) reproducible on storage created using old

binary format.

To update binary format storage to latest one you should export database in JSON format and import it back. Using either console
commands export database and import database or Java API look at com.orientechnologies.orient.core.db.tool.0DatabaseImport ,
com.orientechnologies.orient.core.db.tool.0ODatabaseExport classes and

com.orientechnologies.orient.test.database.auto.DbImportExportTest test.

e Current binary format version can be read from
com.orientechnologies.orient.core.db.record.0CurrentStorageComponentsFactory#binaryFormatVersion pIoporty.

e Instance of ocurrentStorageComponentsFactory class can be retrieved by call of
com.orientechnologies.orient.core.storage.0Storage#getComponentsFactory method.

e Latest binary format version can be read from here

com.orientechnologies.orient.core.config.0StorageConfiguration#CURRENT_BINARY_FORMAT_VERSION .

Please note that binary compatibility is supported since 1.7-rc2 version for plocal storage (as exception you can read database created in

1.5.1 version by 1.7-rc2 version).

Return to Upgrade.

Release 2.2.x

What's new?

NOTE: Release 2.2.6 introduced a change in the internal distributed protocol that does not allow for a cluster of OrientDB Servers, with
version between 2.2.0 and 2.2.5, to be hot migrated to a release 2.2.6 or major. The solution is to stop the entire cluster and then execute
the upgrade.

Spatial Module

OrientDB v2.2 offers a brand new module to handle geospatial information provided as external plugin. Look at Spatial Index.

Pattern Matching

Starting from v2.2, OrientDB provides an alternative way to query the database by using the Pattern M atching approach. For more
information look at SQL M atch.

Non-Stop Incremental Backup and Restore

OrientDB Enterprise Edition allows Non-Stop Incremental Backup and Restore.

Distributed

Release v2.2 contains many improvement on distributed part. First of all there is a huge improvement on performance. With 2 nodes we

measured 5x better and with 3 nodes is about 10x faster than 2.1!

Management of the Quorum

Before 2.2, the writeQuorum was scaled down to 1 because the setting failureAvailableNodesLessQuorum (that now is no longer
supported).

This wasn't correct, because if a node is unreachable, it could be because network temporary error, split brain, etc. So downgrading the
writeQuorum means no guarantee for consistency when 2 nodes see each other again, because both nodes thought to be the only one and

they continue working with quorum=1 with evident merge conflict risks.

In v2.2.0-rc1 the nodes is never removed automatically from the configuration for this reason, unless you manually remove a node from
the configuration claiming that node is not part of the cluster anymore. The new SQL command to remove a server from the

configuration is:

HA REMOVE SERVER <server-name>

Other changes

e Multi-Threads message management
e Static Ownership of clusters
e 'majority’ and 'all' quorum to assure you have the majority (N/2+1) or the total of the consensus
e Removed failureAvailableNodesLessQuorum setting: with majority you don't need this setting anymore
e Removed hotAlignment setting: servers, once they join the cluster, remain always in the configuration until they are manually
removed
e Server Roles, where you can specify a node is a read only "REPLICA"
e [oad balancing on the client side
e OrientDB doesn't use Hazelcast Queues to exchange messages between nodes, but rather the OrientDB binary protocol
e New SQL commands to manage the distributed configuration:
O HA REMOVE SERVER <server-name> , to remove a server from the configuration
O HA SYNC DATABASE , to ask for a resync of the database

O HA SYNC CLUSTER <cluster-name> , to ask for a resync of a single cluster

Command Cache

OrientDB 2.2 has a new component called Command Cache, disabled by default, but that can make a huge difference in performance on

some use cases. Look at Command Cache to know more.

Sequences

In v2.2 we introduced Sequences. Thanks to the sequences it's easy to maintain counters and incremental ids in your application. You

can use Sequences from both Java API and SQL.

Parallel queries

OrientDB v2.2 can run query in parallel, using multiple threads. To use parallel queries, append the PARALLEL keyword at the end of

SQL SELECT. Example: SELECT FROM V WHERE amount < 100 PARALLEL .

Starting from v2.2, the OrientDB SQL executor can decide if execute or not a query in parallel, only if query.parallelauto settingis

enabled. To tune parallel query execution these are the new settings:

e query.parallelAuto enable automatic parallel query, if requirements are met. By default is false.
® query.parallelMinimumRecords is the minimum number of records to activate parallel query automatically. Default is 300,000.
e query.parallelResultQueueSize is the size of the queue that holds results on parallel execution. The queue is blocking, so in case

the queue is full, the query threads will be in a wait state. Default is 20,000 results.

Automatic usage of Multiple clusters

Starting from v2.2, when a class is created, the number of underlying clusters will be the number of cores. Issue 4518.

Encryption at rest

OrientDB v2.2 can encrypt database at file system level by using DES and AES encryption.

New ODocument.eval()

To execute quick expression starting from a ODocument and Vertex/Edge objects, use the new .eval() method. The old syntax

ODocument . field("city[0].country.name") has been deprecated, but still supported. Issue 4505.

Security

OrientDB v2.2 comes with a plethora of new security features, including a new centralized security module, external authenticators
(including Kerberos), LDAP import of users, password validation, enhanced auditing features, support for syslog events, using a salt

with password hashes, and a new system user.

security.json

The new security module uses a JSON configuration file, located at config\security.json .

External Authenticators

OrientDB v2.2 supports external authentication, meaning that authentication of database and server users can occur outside the database

and server configuration. Kerberos/SPNEGO authentication is now fully supported.

LDAP Import

As part of the new security module, LDAP users can be imported automatically into OrientDB databases (including the new system
database) using LDAP filters.

Password Validator

https://github.com/orientechnologies/orientdb/issues/4518
https://github.com/orientechnologies/orientdb/issues/4505

Password validation is now fully supported, including the ability to specify minimum length and the number of uppercase, special, and

numeric characters.
Auditing

Auditing is no longer an Enterprise-only feature and supports many new auditing events, including the creation and drop ping of classes,
reloading of configuration files, and distributed node events. Additionally, if the new syslog plugin is installed, auditing events will also

be recorded to syslog.

Salt

OrientDB v2.2 increases security by using SALT. This means that hashing of password is much slower than OrientDB v2.1. You can

configure the number of cycles for the SALT: more is harder to decode but is slower. Change the setting
security.userPasswordSaltIterations to the number of cycles. Default is 65k cycles. The default password hashing algorithm is now
PBKDF2WithHmacSHA256 this is not present in any environment so you can change it setting security.userPasswordDefaultAlgorithm

possible alternatives values are PBKDF2withHmacSHAL1 O SHA-256

System User

As part of the new "system database" implementation, OrientDB v2.2 offers a new kind of user, called the System User. A system user
is like a hybrid between a server user and a database user, meaning that a system user can have permissions and roles assigned like a

database user but it can be applied to the entire system not just a single database.

System Database

OrientDB now uses a "system database" to provide additional capabilities.
The system database, currently named OSystem, is created when the OrientDB server starts, if the database does not exist.
Here's a list of some of the features that the system database may support:

e Anew class of user called the system user

e A centralized location for configuration files

e Logging of global auditing events

e Recording performance metrics about the server and its databases

Direct Memory

Starting from v2.2, OrientDB uses direct memory. The new server.sh (and .bat) already set the maximum size value to 512GB of

memory by setting the JVM configuration

-XX:MaxDirectMemorySize=512g

If you run OrientDB embedded or with a different script, please set MaxpirectMemorySize to a high value, like 5129 .

NULL Values in Indexes

Starting from v2.2, by default any new index created will not ignore NULL values; null values will be indexed as any other values. This
means that if you have a UNIQUE index, you cannot have multiple NULL keys. This applies only to the new indexes, opening an old
database with indexes previously created, will all ignore NULL by default.

To create an index that explicitly ignore nulls (like the default with v2.1 and earlier), look at the following examples by usinng SQL or
Java APIL.

SQL:

CREATE INDEX addresses ON Employee (address) NOTUNIQUE METADATA {ignoreNullValues: }

And Java API:

https://github.com/orientechnologies/orientdb/issues/1229

schema.getClass(Employee.class).getProperty("address").createIndex(0Class.INDEX_TYPE.NOTUNIQUE, new ODocument().field("ignoreN
ullvalues", true));

API changes

ODocument.field()

To execute quick expression starting from a ODocument and Vertex/Edge objects, use the new .eval() method. The old syntax

ODocument . field("city[0].country.name") is still supported. Issue 4505.

Schema.dropClass()

On drop class are dropped all the cluster owned by the class, and not just the default cluster.

Configuration Changes

Since 2.2 you can force to not ask for a root password setting <isAfterFirstTime>true</isAfterFirstTime> inside the <orient-server>

element in the orientdb-server-config.xml file.

SQL and Console commands Changes

Strict SQL parsing is now applied also to statements for S chema Manipulation (CREATE CLASS, ALTER CLASS, CREATE
PROPERTY, ALTER PROPERTY etc.)

ALTER DATABASE: A statement like

ALTER DATABASE dateformat yyyy-MM-dd

is correctly executed, but is interpreted in the WRONG way: the yyyy-MM-dd is interpreted as an expression (two subtractions) and not

as a single date format. Please re-write it as (see quotes)
ALTER DATABASE dateformat 'yyyy-MM-dd'
CREATE FUNCTION
In some cases a variant the syntax with curly braces was accepted (not documented), eg.

CREATE FUNCTION testCreateFunction {return 'hello '+name;} PARAMETERS [name] IDEMPOTENT true LANGUAGE Javascript

Now it's not supported anymore, the right syntax is

CREATE FUNCTION testCreateFunction "return 'hello '+name;" PARAMETERS [name] IDEMPOTENT true LANGUAGE Javascript
ALTER PROPERTY
The ALTER PROPERTY command, in previous versions, accepted any unformatted value as last argument, eg.

ALTER PROPERTY Foo.name min 2015-01-01 00:00:00

In v.2.2 the value must be a valid expression (eg. a string):

ALTER PROPERTY Foo.name min "2015-01-01 00:00:00"

CREATE USER and DROP USER

In v2.2 we introduced new specific commands to work with users.

https://github.com/orientechnologies/orientdb/issues/4505
https://github.com/orientechnologies/orientdb/pull/4000

Migration from 2.1.x to 2.2.x

Databases created with release 2.1.x are compatible with 2.2.x, so you don't have to export/import the database.

Release 2.1.x

What's new?

Live Query

OrientDB 2.1 includes the first exp erimental version of LiveQuery. See details here.

Migration from 2.0.x to 2.1.x

Databases created with release 2.0.x are compatible with 2.1, so you don't have to export/import the database.

Difference function

In 2.0.x difference() function had inconsistent behavior: it actually worked as a symmetric difference (see 4366, 3969) In 2.1 it was
refactored to perform normal difference (https:/proofwiki.org/wiki/Definition:Set_Difference) and another function was created for
symmetric difference (called "sy mmetricDifference()").

If for some reason you application relied on the (wrong) behavior of difference() function, please change your queries to invoke
symmetricDifference() instead.

Strict SQL parser

V 2.1 introduces a new implementation of the new SQL parser. This implementation is more strict, so some queries that were allowed in

2.0.x could not work now.

For backward compatibility, you can disable the new parser from Studio -> DB -> Configuration -> remove the flag from strictSql
(bottom right of the page).

Custom Properties

Name Value

strictSql v

Or via console by executing this command, just once:

ALTER DATABASE custom strictSql=

Important improvements of the new parser are:

e full support for named (:param) and unnamed (?) input parameters: now you can use input parameters almost everywhere in a
query: in subqueries, function parameters, between square brackets, as a query target

e better management of blank spaces and newline characters: the old parser was very sensitive to presence or absence of blank spaces
(especially in particular points, eg. before and after square brackets), now the problem is completely fixed

e strict validation: the old parser in some cases failed to detect invalid queries (eg. a macroscopic example was a query with two
WHERE conditions, like SELECT FORM Foo WHERE a = 2 WHERE a = 3), now all these problems are completely fixed

Writing the new parser was a good opportunity to validate our query language. We discovered some ambiguities and we had to remove

them. Here is a short list of these problems and how to manage them with the new parser:

e - as avalid character for identifiers (property and class names): in the old implementation you could define a property name like
"simple-name" and do SELECT simple-name FROM Foo . This is not allowed anymore, because - character is used for arithmetic
operations (subtract). To use names with - character, use backticks. Example: SELECT “simple-name™ FROM Foo

e reserved keywords as identifiers: words like select , from, where ... could be used as property or class name, eg. this query

was valid SeLecT FrRoM FRoM FRoM . In v 2.1 all the reserved keywords have to be quoted with a backtick to be used as valid

https://github.com/orientechnologies/orientdb-docs/blob/master/Live-Query.md
https://github.com/orientechnologies/orientdb/issues/4366
https://github.com/orientechnologies/orientdb/issues/3969
https://proofwiki.org/wiki/Definition:Set_Difference

identifiers: SELECT “FROM™ FROM “FROM

Object database

Before 2.1 entity class cache was static, so you could not manage multiple OObjectDatabase connections in the same VM. In 2.1

registerEntity Class() works at storage level, so you can open multiple OObjectDatabase connections in the same VM.

IMPORTANT: in 2.1 if you close and re-open the storage, you have to re-register your POJO classes.

Distributed architecture

Starting from release 2.1.6 it's not possible to hot upgrade a distributed architecture node by node, because the usage of the last recent
version of Hazelcast that breaks such network compatibility. If you're up grading a distributed architecture you should power off the

entire cluster and restart it with the new release.

API changes

ODatabaseDocumentTx.activateOnCurrentThread()

If by upgading to v2.1 you see errors of kind "Database instance is not set in current thread...", this means that you used the same
ODatabase instance across multiple threads. This was always forbidden, but some users did it with unpredictable results and random

errors. For this reason in v2.1 OrientDB always checks that the ODatabase instance was bound to the current thread.

We introduced a new API to allow moving a ODatabase instance across threads. Before to use a ODatabase instance call the method

ObatabaseDocumentTx.activateonCurrentThread() and the ODatabase instance will be bound to the current thread. Example:

ODatabaseDocumentTx db = new ODatabaseDocumentTx('"plocal/temp/mydb").open("admin", "admin");
new Thread(){
public void run() {
db.activateOnCurrentThread(); // <---- BINDS THE DATABASE ON CURRENT THREAD
db.command(new OCommandSQL("select from MyProject where thisSummerIsVeryHot = true")).execute();
}
}.start();

Migration from 1.7.x to 2.0.x

Databases created with release 1.7.x are compatible with 2.0, so you don't have to export/import the database like in the previous

releases. Check your database directory: if you have a file *.wal, delete it before migration.

Use the new binary serialization

To use the new binary protocol you have to export and reimport the database into a new one. This will boost up your database
performance of about +20% against old database.

To export and reimport your database follow these steps:
1) Stop any OrientDB server running
2) Open a new shell (LinuxM ac) or a Command Prompt (Windows)

2) Export the database using the console. M ove into the directory where you've installed OrientDB 2.0 and execute the following

commands:

> cd bin

> ./console.sh (or bin/console.bat under Windows)
orientdb> CONNECT plocal:/temp/mydb admin admin
orientdb> EXPORT DATABASE /temp/mydb.json.gz
orientdb> DISCONNECT

orientdb> CREATE DATABASE plocal:/temp/newdb
orientdb> IMPORT DATABASE /temp/mydb.json.gz

Now your new database is: /temp/newdb.

API changes

ODocument pin() and unpin() methods

We removed pin() and unpin() methods to force the cache behavior.

ODocument protecting of internal methods

We have hidden some methods considered internal to avoid users call them. However, if your usage of OrientDB is quite advanced and
you still need them, you can access from Internal helper classes. Please still consider them as internals and could change in the future.

Below the main ones:

o ORecordAbstract.addListener(), uses ORecordListenerM anager.addListener() instead

ODatabaseRecord.getStorage()

‘We moved getStorage() method to ODatabaseRecordInternal.

ODatabaseDocumentPool

We replaced ODatabaseDocumentPool Java class (now deprecated) with the new, more efficient

com.orientechnologies.orient.core.db.OPartitionedDatabasePool.

Caches

‘We completely removed Level2 cache. Now only Levell and Storage DiskCache are used. This change should be transparent with code

that run on previous versions, unless you enable/disable Level2 cache in your code.

Furthermore it's not possible anymore to disable Cache, so method setenable() has been removed.

Changes
Context 1.7.x 2.0.x
API ODatabaseRecord.getLevel1Cache() ODatabaseRecord.getLocalCache()
API ODatabaseRecord.getLevel2Cache() Not available

Configuration OGlobalConfiguration. CACHE_LEVEL1_ENABLED OGlobalConfiguration. CACHE_LOCAL_ENABLED

Configuration OGlobalConfiguration. CACHE_LEVEL2_ENABLED Not available

No more LOCAL engine

We completely dropped the long deprecated LOCAL Storage. If your database were created using "LLOCAL:" then you have to export it
with the version you were using, then import it in a fresh new database created with OrientDB 2.0.

Server

First run ask for root password

At first run, OrientDB asks for the root's password. Leave it blank to auto generate it (like with 1.7.x). This is the message:

| This is the first time the server is running.
| Please type a password of your choice for the
| 'root' user or leave it blank to auto-generate it. |

Root password [BLANK=auto generate it]: _

If you set the system setting or environment variable ORIENTDB_ROOT_PASSWORD , then its value will be taken as root password. If it's

defined, but empty, a password will be automatically generated.

Distributed

First run ask for node name

At first run as distributed, OrientDB asks for the node name. Leave it blank to auto generate it (like with 1.7.x). This is the message:

| This is the first time that the server is running |
| as distributed. Please type the name you want
| to assign to the current server node.

Node name [BLANK=auto generate it]: _

If you set the system setting or environment variable ORIENTDB_NODE_NAME , then its value will be taken as node name. If it's defined, but

empty, a name will be automatically generated.

Multi-Master replication

With OrientDB 2.0 each record cluster selects assigns the first server node in the servers list node as master for insertion only. In 99%
of the cases you insert per class, not per cluster. When you work per class, OrientDB auto-select the cluster where the local node is the

master. In this way we completely avoid conflicts (like in 1.7.x).

Example of configuration with 2 nodes replicated (no sharding):

INSERT INTO Customer (name, surname) VALUES ('Jay', 'Miner')

If you execute this command against a nodel, OrientDB will assign the cluster-id where nodel is master, i.e. #13:232. With node2 would

be different: it couldn't never be #13.

For more information look at: http:/www.orientechnologies.com/docs/last/orientdb.wiki/Distributed-Sharding html.

Asynchronous replication

OrientDB 2.0 supports configurable execution mode through the new variable executionMode . It can be:

e undefined , the default, means synchronous
e synchronous , to work in synchronous mode

e asynchronous , to work in asynchronous mode

"autoDeploy": ,
"hotAlignment": ,
"executionMode": "undefined",
"readQuorum": 1,
"writeQuorum": 2,
"failureAvailableNodesLessQuorum": .
"readYourWrites": ,
"clusters": {

"internal": {

}

"index": {

}

ey g

"servers" : ["<NEW_NODE>"]

Set to "asynchronous" to speed up the distributed replication.

Graph API

Multi-threading

Starting from OrientDB 2.0, instances of both classes OrientGraph and OrientGraphNoTx can't be shared across threads. Create and

destroy instances from the same thread.

Edge collections

OrientDB 2.0 disabled the auto scale of edge. In 1.7.x, if a vertex had 1 edge only, a LINK was used. As soon as a new edge is added the
LINK is auto scaled to a LINKSET to host 2 edges. If you want this setting back you have to call these two methods on graph instance
(or OrientGraphFactory before to get a Graph instance):

graph.setAutoScaleEdgeType(true);
graph.setEdgeContainerEmbedded2TreeThreshold(40);

http://www.orientechnologies.com/docs/last/orientdb.wiki/Distributed-Sharding.html

Migration from 1.6.x to 1.7.x

Databases created with release 1.6.x are compatible with 1.7, so you don't have to export/import the database like in the previous

releases.

Engine

OrientDB 1.7 comes with the PLOCAL engine as default one. For compatibility purpose we still support "local" database, but this will
be removed soon. So get the chance to migrate your old "local" database to the new "plocal" follow the steps in: Migrate from local

storage engine to plocal.

Migration from 1.5.x to 1.6.x

Databases created with release 1.5.x need to be exported and reimported in OrientDB 1.6.x.
From OrientDB 1.5.x:

e Open the console under "bin/" directory calling:

o ./console.sh (or .bat on Windows)

e Connect to the database and export it, example:
o orientdb> connect plocal:/temp/db admin admin
o orientdb> export database /temp/db.zip

e Run OrientDB 1.6.x console

o ./console.sh (or .bat on Windows)

e Create a new database and import it, example:
o orientdb> create database plocal:/temp/db admin admin plocal

o orientdb> import database /temp/db.zip

For any problem on import, look at Import Troubleshooting.

Engine

OrientDB 1.6.x comes with the new PLOCAL engine. To migrate a database create with the old "local" to such engine follow the steps

in: Migrate from local storage engine to plocal

Migration from 1.4.x to 1.5.x

OrientDB 1.5.x automatic upgrades any databases created with version 1.4.x, so export and import is not needed.

Engine

OrientDB 1.5.x comes with the new PLOCAL engine. To migrate to such engine follow the steps in: Migrate from local storage engine to

plocal.

Migration from 1.3.x to 1.4.x

GraphDB

OrientDB 1.4.x uses a new optimized structure to manage graphs. You can use the new OrientDB 1.4.x API against graph databases
created with OrientDB 1.3.x setting few properties at database level. In this way you can continue to work with your database but

remember that this doesn't use the new structure so it's strongly suggested to export and import the database.

The new Engine uses some novel techniques based on the idea of a dynamic Graph that change shape at run-time based on the settings

and content. The new Engine is much faster than before and needs less space in memory and disk. Below the main improvements:

e avoid creation of edges as document if haven't properties. With Graphs wit no properties on edges this can save more than 50% of
space on disk and therefore memory with more chances to have a big part of database in cache. Furthermore this speed up traversal
too because requires one record load less. As soon as the first property is set the edge is converted transparently

e Vertex "in" and "out" fields aren't defined in the schema anymore because can be of different types and change at run-time adapting
to the content:

o no connection = null (no space taken)
o 1 connection = store as LINK (few bytes)
o 1 connections = use the Set of LINKS (using the M VRBTreeRIDSet class)

e binding of Blueprints "label" concept to OrientDB sub-classes. If you create an edge with label "friend", then the edge sub-type
"friend" will be used (created by the engine transparently). This means: 1 field less in document (the field "label") and therefore less
space and the ability to use the technique 1 (see above)

e edges are stored on different files at file system level because are used different clusters

e better partitioning against multiple disks (and in the future more parallelism)

e direct queries like "select from friend" rather than "select from E" and then filtering the result-set looking for the edge with the
wanted label property

e multiple properties for edges of different labels. Not anymore a "in" and "out" in Vertex but "out_friend" to store all the outgoing
edges of class "friend". This means faster traversal of edges giving one or multiple labels avoiding to scan the entire Set of edges to
find the right one

Blueprints changes

If you was using Blueprints look also to the Blueprints changes 1.x and 2.x.

Working with database created with 1.3.x

Execute these commands against the open database:

ALTER DATABASE custom uselLightweightEdges=

ALTER DATABASE custom useClassForEdgelLabel=

ALTER DATABASE custom useClassForVertexLabel=
ALTER DATABASE custom useVertexFieldsForEdgelLabels=

Base class changed for Graph elements

Before 1.4.x the base classes for Vertices was "OGraphVertex" with alias "V" and for Edges was "OGraphEdge" with alias "E". Starting
from v1.4 the base class for Vertices is "V" and "E" for Edges. So if in your code you referred "V" and "E" for inheritance nothing is
changed (because "V" and "E" was the aliases of OGraphVertex and "OGraphEdge"), but if you used directly "OGraphVertex" and
"OGraphEdge" you need to replace them into "V" and "E".

If you don't export and import the database you can rename the classes by hand typing these commands:

https://github.com/tinkerpop/blueprints/wiki/The-Major-Differences-Between-Blueprints-1.x-and-2.x

ALTER CLASS OGraphVertex shortname
ALTER CLASS OGraphVertex name V
ALTER CLASS 0GraphEdge shortname=
ALTER CLASS 0GraphEdge name E

Export and re-import the database

Use GREMLIN and GraphML format.

If you're exporting the database using the version 1.4.x you've to set few configurations at database level. See above Working with

database created with 1.3.x.

Export the database

$ cd $ORIENTDB_HOME/bin
$./gremlin.sh

\d
(o 0)

gremlin> g = new OrientGraph("local:/temp/db");
==>orientgraph[local:/temp/db]

gremlin> g.saveGraphML("/temp/export.xml")
==>null

Import the exported database

gremlin> g = new OrientGraph("local:/temp/newdb");
==>orientgraph[local:/temp/newdb]

gremlin> g.loadGraphML("/temp/export.xml");
==>null

gremlin>

Your new database will be created under "/temp/newdb" directory.

General Migration

If you want to migrate from release 1.3.xto 1.4.x you've to export the database using the 1.3.x and re-import it using 1.4.x. Example:

Export the database using 1.3.x

$ cd $ORIENTDB_HOME/bin

$./console.sh

OrientDB console v.1.3.0 - www.orientechnologies.com
Type 'help' to display all the commands supported.

orientdb> CONNECT local:../databases/mydb admin admin
Connecting to database [local:../databases/mydb] with user 'admin'...
OK

orientdb> EXPORT DATABASE /temp/export.json.gz
Exporting current database to: database /temp/export.json.gz...

Started export of database 'mydb' to /temp/export.json.gz...
Exporting database info...OK

Exporting clusters...OK (24 clusters)

Exporting schema...OK (23 classes)

Exporting records. ..

Cluster 'internal' (id=0)...0K (records=3/3)
Cluster 'index' (id=1)...0K (records=0/0)
Cluster 'manindex' (id=2)...0K (records=1/1)
Cluster 'default' (id=3)...0K (records=0/0)
Cluster 'orole' (id=4)...0K (records=3/3)
Cluster 'ouser' (id=5)...0K (records=3/3)
Cluster 'ofunction' (id=6)...0K (records=1/1)
Cluster 'oschedule' (id=7)...0K (records=0/0)

- Cluster 'orids' (id=8)............. OK (records=428/428)

- Cluster 'v' (id=9)............. OK (records=809/809)

- Cluster 'e' (id=10)...0K (records=0/0)

- Cluster 'followed_by' (id=11)............. OK (records=7047/7047)

Cluster 'sung_by' (id=12)...0K (records=2/2)
Cluster 'written_by' (id=13)...0K (records=1/1)
Cluster 'testmodel' (id=14)...0K (records=2/2)
Cluster 'vertexwithmandatoryfields' (id=15)...0K (records=1/1)
Cluster 'artist' (id=16)...0K (records=0/0)
Cluster 'album' (id=17)...0K (records=0/0)
Cluster 'track' (id=18)...0K (records=0/0)
Cluster 'sing' (id=19)...0K (records=0/0)
Cluster 'has' (id=20)...0K (records=0/0)
Cluster 'person' (id=21)...0K (records=2/2)
Cluster 'restaurant' (id=22)...0K (records=1/1)
Cluster 'eat' (id=23)...0K (records=0/0)

Done. Exported 8304 of total 8304 records

Exporting index info...

- Index dictionary...0K

OK (1 indexes)

Exporting manual indexes content...

- Exporting index dictionary ...OK (entries=0)
OK (1 manual indexes)

Database export completed in 1913ms

Re-import the exported database using OrientDB 1.4.x:

$ cd $ORIENTDB_HOME/bin

$./console.sh

OrientDB console v.1.3.0 - www.orientechnologies.com
Type 'help' to display all the commands supported.

orientdb> CREATE DATABASE local:../databases/newmydb admin admin local

Creating database [local:../databases/newmydb] using the storage type [local]...
Database created successfully.

Current database is: local:../databases/newmydb

orientdb> IMPORT DATABASE /temp/export.json.gz
Importing database database /temp/export.json.gz...

Started import of database 'local:../databases/newmydb' from /temp/export.json.gz...
Importing database info...OK

Importing clusters...

Creating cluster 'internal'...OK, assigned id=0
Creating cluster 'default'...OK, assigned id=3

Creating cluster 'orole'...OK, assigned id=4

Creating cluster 'ouser'...OK, assigned id=5

Creating cluster 'ofunction'...OK, assigned id=6
Creating cluster 'oschedule'...OK, assigned id=7
Creating cluster 'orids'...OK, assigned id=8

Creating cluster 'v'...OK, assigned id=9

Creating cluster 'e'...OK, assigned id=10

Creating cluster 'followed_by'...OK, assigned id=11
Creating cluster 'sung_by'...OK, assigned id=12
Creating cluster 'written_by'...OK, assigned id=13
Creating cluster 'testmodel'...OK, assigned id=14
Creating cluster 'vertexwithmandatoryfields'...OK, assigned id=15
Creating cluster 'artist'...OK, assigned id=16

Creating cluster 'album'...OK, assigned id=17

Creating cluster 'track'...OK, assigned id=18

Creating cluster 'sing'...OK, assigned id=19

Creating cluster 'has'...OK, assigned id=20

Creating cluster 'person'...OK, assigned id=21

Creating cluster 'restaurant'...OK, assigned id=22
Creating cluster 'eat'...OK, assigned id=23

Done. Imported 22 clusters

Importing database schema...OK (23 classes)

Importing records...

- Imported records into cluster 'internal' (id=0): 3 records
- Imported records into cluster 'orole' (id=4): 3 records
- Imported records into cluster 'ouser' (id=5): 3 records

- Imported records into cluster 'internal' (id=0): 1 records

- Imported records into cluster 'v' (id=9): 809 records

- Imported records into cluster 'followed_by' (id=11): 7047 records

- Imported records into cluster 'sung_by' (id=12): 2 records

- Imported records into cluster 'written_by' (id=13): 1 records

- Imported records into cluster 'testmodel' (id=14): 2 records

- Imported records into cluster 'vertexwithmandatoryfields' (id=15): 1 records
- Imported records into cluster 'person' (id=21): 2 records

Done. Imported 7874 records

Importing indexes ...

- Index 'dictionary'...OK

Done. Created 1 indexes.

Importing manual index entries...

- Index 'dictionary'...OK (O entries)
Done. Imported 1 indexes.

Delete temporary records...OK (O records)

Database import completed in 2383 ms
orientdb>

Your new database will be created under "../databases/newmydb" directory.

Backup & Restore

OrientDB supports backup and and restore operations, like any database management system.

The Backup DATABASE command executes a comp lete backup on the currently open database. It compresses the backup the backup

using the ZIP algorithm. To restore the database from the subsequent .zip file, you can use the RESTORE DATABASE command.

Backups and restores are much faster than the ExPorT pDATABASE and IMPORT DATABASE commands. You can also automate backups
using the Automatic Backup server plugin. Additionally, beginning with version 2.2 of Enterprise Edition OrientDB introduces major

support for incremental backups.

NOTE: OrientDB Community Edition does not support backing up remote databases. OrientDB Enterprise Edition does

support this feature. For more information on how to implement this with Enterprise Edition, see Remote Backups.

Backups versus Exports

During backups, the Backup pATABASE command produces a consistent copy of the database. During this process, the database locks all
write op erations, waiting for the backup to finish. If you need perform reads and writes on the database during backups, set up a

distributed cluster of nodes. To access to the non blocking backup feature, use the Enterprise Edition.

By contrast, the ExporT pDATABASE command doesn't lock the database, allowing concurrent writes to occur during the export process.

Consequentially, the export may include changes made after you initiated the export, which may result in inconsistencies.

Using the Backup Script

Beginning in version 1.7.8, OrientDB introduces a backup.sh script found in the $ORIENTDB_HOME/bin directory. This script allows

you to initiate backups from the system console.

Syntax

./backup.sh <db-url> <user> <password> <destination> [<type>]

e <db-url> Defines the URL for the database to backup.
e <user> Defines the user to run the backup.
e <password> Defines the password for the user.
e <destination> Defines the path to the backup file the script creates, (use the .zip extension).
e <type> Defines the backup type. Supported types:
o default Locks the database during the backup.

o 1vm Executes an LVM copy-on-write snapshot in the background.
NOTE Non-blocking backups require that the operating system support LVM. For more information, see

e LVM
e File system snapshots with LVM
e LVM snapshot backup

Examples

e Backup a database opened using plocal :

$ $ORIENTDB_HOME/bin/backup.sh plocal:../database/testdb \
admin adminpasswd \

/path/to/backup.zip

e Perform a non-blocking LVM backup, using plocal :

http://www.orientechnologies.com/orientdb-enterprise/
http://www.orientechnologies.com/enterprise/last/servermanagement.html
http://en.wikipedia.org/wiki/Logical_Volume_Manager_%28Linux%29
http://arstechnica.com/information-technology/2004/10/linux-20041013/
http://www.tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html

$ SORIENTDB_HOME/bin/backup.sh plocal:../database/testdb \

admin adminpasswd \
/path/to/backup.zip \

1lvm

e Perform a backup using the OrientDB Console with the BAckup command:

orientdb> CONNECT PLOCAL:../database/testdb/ admin adminpasswd

orientdb> BACKUP DATABASE /path/to/backup.zip

Backup executed in 0.52 seconds.

Restoring Databases

Once you have created your backup.zip file, you can restore it to the database either through the OrientDB Console, using the

RESTORE DATABASE command.
orientdb> RESTORE DATABASE /backups/mydb.zip

Restore executed in 6.33 seconds

Bear in mind that OrientDB does not support merging during restores. If you need to merge the old data with new writes, instead use

EXPORT DATABASE and IMPORT DATABASE commands, instead.
For more information, see

® BACKUP DATABASE
® RESTORE DATABASE
® EXPORT DATABASE
® IMPORT DATABASE

Console Commands

Incremental Backup and Restore

(Since v2.2 - Enteprise Edition only)

An incremental backup generates smaller backup files by storing only the delta between two versions of the database. This is useful
when you execute a backup on a regular basis and you want to avoid having to back up the entire database each time. The easiest way to

execute a backup and a restore is using Studio.

NOTE: This feature is available only in the OrientDB Enterprise Edition. If you are interested in a commercial license look at OrientDB

Subscription Packages.

NOTE: Lucene Indexes are not supported yet in the incremental backup/restore process. Once the incremental restore is finished the

indexes rebuild is necessary see (here)[https:/github.com/orientechnologies/orientdb/issues/5958]

See also

e Backup and Restore
o BACKUP DATABASE console command
o RESTORE DATABASE console command

How does it work?

Every time a backup is executed, OrientDB writes a file named last-backup.json in the database directory. This is an example of the

content:

{
"lsn": g
"startedOn": "2015-08-17 10:33:23.943",
"completedOn": "2015-08-17 10:33:45.121"

}

The most important information is the 1sn field that is the WAL LSN (Last Serial Number). Thanks to this number, OrientDB is able

to understand the last change in the database, so the next incremental backup will be done starting from last 1sn + 1.

Executing an Incremental Backup

Incremental Backup via Console

Backup Database console command accepts -incremental as an optional parameter to execute an incremental backup. In this case the
new backup is executed from the last backup (file last-backup.json is read if present). If this is the first incremental backup, a full

backup is executed. Example:

orientdb> connect plocal:/databases/mydb admin admin
orientdb {db=Whisky}> backup database /tmp/backup -incremental

The incremental backup setting also allows you to specify an LSN version to start with. Example:

orientdb> connect plocal:/databases/mydb admin admin
orientdb {db=Whisky}> backup database /tmp/backup -incremental=93222

Incremental Backup via Java API

You can perform an incremental backup via the Java API too.

NOTE The remote protocol is supported, but the specified path is relative to the server.

http://orientdb.com/orientdb-enterprise
http://orientdb.com/support
https://github.com/orientechnologies/orientdb/issues/5958

If you are managing an ODocumentDatabase you have to call the incrementalBackup() method that accepts a String path parameter to

the backup directory:

ODatabaseDocumentTx documentDatabase = new ODatabaseDocumentTx(dbURL);
documentDatabase.open("root", "password");
documentDatabase.incrementalBackup("/tmp/backup");

If you are using the OrientGraph interface you have to get the raw graph before calling the incrementalBackup() method:

OrientGraph graphDatabase = new OrientGraphNoTx(dbURL);
graphDatabase.open("root", "password");
graphDatabase.getRawGraph() .incrementalBackup("/tmp/backup");

Executing an Incremental Restore

Incremental Restore via the Console

Restore Database console command automatically recognizes if a backup contains incremental data. Restoring an incremental backup
creates a new database with the restored content. You cannot perform an in-place incremental restore on an existing database. The
execution of the create database command with the option -restore builds a fresh database and performs the incremental restore

starting from the backup path.

Example:

orientdb> create database remote:localhost/mydb root root plocal graph -restore=/tmp/backup

Creating database [remote:localhost/mydb] using the storage type [plocal]...
Connecting to database [remote:localhost/mydb] with user 'admin'...OK

Database created successfully.

Current database is: remote:localhost/mydb

Incremental Restore via the Java API

You can perform an incremental restore via the Java API too. To create a database from an incremental backup you can call from Java
ODatabase#create(path-to-incremental-backup-directory)

Incremental Restore in Distributed Architecture

The incremental restore affects only the local node where the restore command is executed.

Let's suppose we have 3 nodes and we execute an incremental restore on nodel. If we execute an incremental restore on nodel a new
fresh database is created on all the 3 nodes, but only on node1 the restore procedure is performed. Thus we obtain the database correctly
restored on nodel but an empty database on node2 and node 3.

You can overcome this inconsistency by executing a shutdown on all the nodes of the cluster not involved in the restore procedure

(node2 and node3 in our example), so once restarted they will get the full database from nodel.

Distributed Architecture

The incremental backup is used in the Distributed Architecture when a server node restarts. This avoids having to backup and tranfer

the entire database across the network.

Internals

File Format

In case of incremental backup, the content of the zip file is not the database directory, but rather meta files needed to update the

database with the delta. Example of the content:

- Employee.pcl
- Person.pcl.incremental
- Person.pcm.incremental

This means only three files are changed. Employee.pcl is a full file, while the other two files with extension ".incremental" are

incremental. Incremental files contain all the page changes and have the following format:

fPosocosooonoosonns Posccssoosoosoonno +
| PAGE NUMBER | PAGE CONTENT |

| (long) | byte[] |
fPosocosooonnosonns Posocssoosoosoonno +

Export and Import

OrientDB supports export and import operations, like any database management system.

The ExporT DATABASE command exports the current opened database into a file. The exported file is in the Export JSON format. By

default, it compresses the file using the GZIP algorithm.

Using exports with the IMPORT DATABASE command, you can migrate the database between different releases of OrientDB without

losing data. When doing this, if you receive an error relating to the database version, export the database using the same version of

OrientDB on which you created the database.

orientdb>

Exporting

Exporting
Exporting
Exporting
Exporting

Exporting
Exporting
Exporting
Exporting
Exporting
Exporting
Exporting
Exporting
Exporting
Exporting
Exporting
Exporting

cluster
cluster
cluster
cluster
cluster
cluster
cluster
cluster
cluster
cluster
cluster
cluster

EXPORT DATABASE /temp/petshop.export

current database to: /temp/petshop.export...

database info...OK
dictionary...0K
schema. . .0K
clusters...

'metadata'’ (records=11) -> oK
'index' (records=0) -> OK
'default' (records=779) -> OK
'csv' (records=1000) -> OK
'binary' (records=1001) -> OK
'person' (records=7) -> OK
'animal' (records=5) -> OK
'animalrace' (records=0) -> OK
'animaltype' (records=1) -> OK
'orderitem' (records=0) -> OK
'order' (records=0) -> OK
'city' (records=3) -> OK

Export of database completed.

Exports versus Backups

Exports don't lock the database. Instead, they browse the contents. This means that OrientDB can execute concurrent operations during

the export, but the exported database may not be an exact replica from the time when you issued the command. If you need a database

snapshot, use backups.

The Backur pATABASE command does create a consistent copy of the database, but it locks the database. During the backup, the

database remains in read-only mode, all concurrent write operations are blocked until the backup finishes. In the event that you need a

database snapshot and the ability to perform read/write op erations during the backup, set up a distributed cluster of nodes.

NOTE: Even though the export file is 100% JSON, there are some constraints in the JSON format, where the field order must be

kept. M odifying the file to adjust the indentation may make the file unusable in database imports.

Importing Databases

Once you have exported your database, you can import it using the IMPORT DATABASE command.

orientdb> IMPORT DATABASE /temp/petshop.export.gz -preserveClusterIDs=true

Importing records...

Imported records into the cluster 'internal': 5 records
Imported records into the cluster 'index': 4 records
Imported records into the cluster 'default': 1022 records
Imported records into the cluster 'orole': 3 records
Imported records into the cluster 'ouser': 3 records
Imported records into the cluster 'csv': 100 records
Imported records into the cluster 'binary': 101 records
Imported records into the cluster 'account': 1005 records
Imported records into the cluster 'company': 9 records
Imported records into the cluster 'profile': 9 records
Imported records into the cluster 'whiz': 1000 records
Imported records into the cluster 'address': 164 records
Imported records into the cluster 'city': 55 records
Imported records into the cluster 'country': 55 records
Imported records into the cluster 'animalrace': 3 records
Imported records into the cluster 'ographvertex': 102 records
Imported records into the cluster 'ographedge': 101 records
Imported records into the cluster 'graphcar': 1 records

For more information, see

e JSON Export Format
® RESTORE DATABASE
® EXPORT DATABASE
® IMPORT DATABASE

Console Commands

L]

Export Format

When you run the ExporT pATABASE command, OrientDB exports the database into a zipped file using a special JSON format. When

you run the 1vpoRT DATABASE command, OrientDB unzips the file and parses the JSON, making the import.

Sections

Export files for OrientDB use the following sections. Note that while the export format is 100% JSON, there are some constraints in the
format, where the field order must be kept. Additionally, modifying the file to adjust the indentation (as has been done in the examples

below), may make it unusable in database imports.

Info Section

The first section contains the resuming database information as well as all versions used during the export. OrientDB uses this

information to check for compatibility during the import.

"info": {
"name": "demo",
"default-cluster-id": 2,
"exporter-format": 2,
"engine-version": "1.7-SNAPSHOT",
"storage-config-version": 2,
"'schema-version": 4,
"mvrbtree-version":

}
Parameter Description JSON Type
"'name" Defines the name of the database. String
"default-cluster-id" Defines the Cluster ID to use by default. Range: 0-32,762. Integer
"exporter-format" Defines the version of the database exporter. Integer
"engine-version" Defines the version of OrientDB. String
"'storage-version" Defines the version of the Storage layer. Integer
"schema-version" Defines the version of the schema exporter. Integer
"mvrbtree-version” Defines the version of the M VRB-Tree. Integer

Clusters Section

This section defines the database structure in clusters. It is formed from a list with an entry for each cluster in the database.

"clusters": [
{"name": "internal", "id": 0, "type": "PHYSICAL"},
{"name": "index", "id": 1, "type": "PHYSICAL"},

{"name": "default", "id": 2, "type": "PHYSICAL"}
]
Parameter Description JSON Type
"name" Defines the logical name of the cluster. String
"id" Defines the Cluster ID. Range: 0-32, 767. Integer
"type" Defines the cluster type: PHYSICAL , LOGICAL and MEMORY . String

Schema Section

This section defines the database schema as classes and properties.

"schema": {
"version": 7
"classes": [
{"name": "Account", "default-cluster-id": 9, "cluster-ids": [9],
"properties": [
{"name": "binary", "type": "BINARY", "mandatory": , "not-null": }
{"name": "birthDate", "type": "DATE", "mandatory": , "not-null": }
{"name": "id", "type": "INTEGER", "mandatory": , "not-null": }
1
}
1
3
Parameter Description JSON Type
"version" Defines the version of the record storing the schema. Range: 0-2,147,483,647. Integer
"classes" Defines a list of entries for each class in the schema. Array

Parameters for the Classes Subsection:

Parameter Description JSON Type
"name" Defines the logical name of the class. String
"default- Defines the default Cluster ID for the class. It represents the cluster that stores the Integer

cluster-id" class records. g
weluster-ids" Defines an array of Cluster ID's that store the class records. The first ID is always the Array of
default Cluster ID. Integers
"properties" Defines a list of entries for each property for the class in the schema. Array

Parameters for the Properties Sub-subsection:

Parameter Description JSON Type
"'name" Defines the logical name of the property. String
"type" Defines the property type. String
"mandatory" Defines whether the property is mandatory. Boolean
"not-null" Defines whether the property accepts a NuLL value. Boolean

Records Section

This section defines the exported record with metadata and fields. Entries for metadata are distinguished from fields by the @ symbol.

"records": [
{"@type": "d", "@rid": "#12:476", "@version": 0, "@class": "Account",
"account_id": ,
"date": "2011-12-09 00:00:00:0000",
"@fieldTypes": ["account_id=i", "date=t"]

i

{"@type": "d", "@rid": "#12:477", "@version": 0, "@class": "Whiz",
"id": ,
"date": "2011-12-09 00:00:00:000",
"text": "He in office return He inside electronics for $500,000 Jay",
"@fieldTypes": "date=t"

3

Parameters for Metadata

Parameter Description
"@type" Defines the record-type: d for Document, b for Binary.
"@rid" Defines the Record ID, using the format: <cluster-id>:<cluster-position> .
"@version" Defines the record version. Range: 0-2, 147, 483, 647.
"@class" Defines the logical class name for the record.
"@fieldTypes" Defines an array of the types for each field in this record.
Supported Field Types
Value
1 Long
f Float
d Double
s Short
t Datetime
d Date
c Decimal
b Byte

Full Example

{

"info":{
"name": "demo",
"default-cluster-id": 2,
"exporter-version": 2,
"engine-version": "1.0rc8-SNAPSHOT",
"storage-config-version": 2,
"'schema-version": 4,
"mvrbtree-version": 0

1y

"clusters": [
{"name": "internal", "id": 0, "type": "PHYSICAL"},
{"name": "index", "id": 1, "type": "PHYSICAL"},
{"name": "default", "id": 2, "type": "PHYSICAL"},
{"name": "orole", "id": 3, "type": "PHYSICAL"},
{"name": "ouser", "id": 4, "type": "PHYSICAL"},
{"name": "orids", "id": 5, "type": "PHYSICAL"},
{"name": "csv", "id": 6, "type": "PHYSICAL"},
{"name": "binary", "id": 8, "type": "PHYSICAL"},
{"name": "account", "id": 9, "type": "PHYSICAL"},
{"name": "company", "id": 10, "type": "PHYSICAL"},
{"name": "profile", "id": 11, "type": "PHYSICAL"},
{"name": "whiz", "id": 12, "type": "PHYSICAL"},
{"name": "address", "id": 13, "type": "PHYSICAL"},
{"name": "city", "id": 14, "type": "PHYSICAL"},
{"name": "country", "id": 15, "type": "PHYSICAL"},
{"name": "dummy", "id": 16, "type": "PHYSICAL"},
{"name": "ographvertex", "id": 26, "type": "PHYSICAL"},
{"name": "ographedge", "id": 27, "type": "PHYSICAL"},
{"name": "graphvehicle", "id": 28, "type": "PHYSICAL"},
{"name": "graphcar", "id": 29, "type": "PHYSICAL"},
{"name": "graphmotocycle", "id": 30, "type": "PHYSICAL"},
{"name": "newv", "id": 31, "type": "PHYSICAL"},
{"name": "mappoint", "id": 33, "type": "PHYSICAL"},
{"name": "person", "id": 35, "type": "PHYSICAL"},
{"name": "order", "id": 36, "type": "PHYSICAL"},
{"name": "post", "id": 37, "type": "PHYSICAL"},

{"name":

"comment", "id": 38, "type": "PHYSICAL"}

JSON Type
String
String
Integer
String

Any

Export format

]!
"schema": {
"version": 210,
"classes": [
{"name": "Account", "default-cluster-id": 9, "cluster-ids": [9],
"properties": [
{"name": "binary", "type": "BINARY", "mandatory": false, "not-null": false},
{"name": "birthDate", "type": "DATE", "mandatory": false, "not-null": false},
{"name": "id", "type": "INTEGER", "mandatory": false, "not-null": false}

]
}
{"name": "Address", "default-cluster-id": 13, "cluster-ids": [13]
By
{"name": "Animal", "default-cluster-id": 17, "cluster-ids": [17]
By
{"name": "AnimalRace", "default-cluster-id": 18, "cluster-ids": [18]
By
{"name": "COMMENT", "default-cluster-id": 38, "cluster-ids": [38]
3
{"name": "City", "default-cluster-id": 14, "cluster-ids": [14]
By

{"name": "Company", "default-cluster-id": 10, "cluster-ids": [10], "super-class": "Account",
"properties": [

]
by
{"name": "Country", "default-cluster-id": 15, "cluster-ids": [15]
by
{"name": "Dummy", "default-cluster-id": 16, "cluster-ids": [16]
By

{"name": "GraphCar", "default-cluster-id": 29, "cluster-ids": [29], "super-class": "GraphVehicle",
"properties": [
]
}
{"name": "GraphMotocycle", "default-cluster-id": 30, "cluster-ids": [30], "super-class": "Graphvehicle",
"properties": [
]
iy
{"name": "Graphvehicle", "default-cluster-id": 28, "cluster-ids": [28], "super-class": "OGraphvertex",
"properties": [
]
}
"name": "MapPoint", "default-cluster-id": 33, "cluster-ids": [33],
p
"properties": [
{"name": "x", "type": "DOUBLE", "mandatory": false, "not-null": false},
{"name": "y", "type": "DOUBLE", "mandatory": false, "not-null": false}
]
}
{"name": "OGraphEdge", "default-cluster-id": 27, "cluster-ids": [27], "short-name": "E",
"properties": [
{"name": "in", "type": "LINK", "mandatory": false, "not-null": false, "linked-class": "OGraphVertex"},
{"name": "out", "type": "LINK", "mandatory": false, "not-null": false, "linked-class": "OGraphVertex"}
]
1y
{"name": "OGraphVertex", "default-cluster-id": 26, "cluster-ids": [26], "short-name": "V",
"properties": [
{"name": "in", "type": "LINKSET", "mandatory": false, "not-null": false, "linked-class": "OGraphEdge"},
{"name": "out", "type": "LINKSET", "mandatory": false, "not-null": false, "linked-class": "OGraphEdge"}
]
}
{"name": "ORIDs", "default-cluster-id": 5, "cluster-ids": [5]
1y
{"name": "ORole", "default-cluster-id": 3, "cluster-ids": [3],
"properties": [
{"name": "mode", "type": "BYTE", "mandatory": false, "not-null": false},
{"name": "name", "type": "STRING", "mandatory": true, "not-null": true},
{"name": "rules", "type": "EMBEDDEDMAP", "mandatory": false, "not-null": false, "linked-type": "BYTE"}
]
}
" : , - -id": 4, -1 : ,
{"name": "OUser", "default-cluster-id": 4, "cluster-ids": [4]
"properties": [
{"name": "name", "type": "STRING", "mandatory": true, "not-null": true},
{"name": "password", "type": "STRING", "mandatory": true, "not-null": true},
{"name": "roles", "type": "LINKSET", "mandatory": false, "not-null": false, "linked-class": "ORole"}
]
iy

{"name": "Order", "default-cluster-id": 36, "cluster-ids": [36]

203

Export format

}!
{"name": "POST", "default-cluster-id": 37, "cluster-ids": [37],
"properties": [
{"name": "comments", "type": "LINKSET", "mandatory": false, "not-null": false, "linked-class": "COMMENT"}
1
}!
{"name": "Person", "default-cluster-id": 35, "cluster-ids": [35]
1y
{"name": "Person2", "default-cluster-id": 22, "cluster-ids": [22],
"properties": [
{"name": "age", "type": "INTEGER", "mandatory": false, "not-null": false},
{"name": "firstName", "type": "STRING", "mandatory": false, "not-null": false},
{"name": "lastName", "type": "STRING", "mandatory": false, "not-null": false}
]
1y
{"name": "Profile", "default-cluster-id": 11, "cluster-ids": [11],
" i agl
properties": [
{"name": "hash", "type": "LONG", "mandatory": false, "not-null": false},
{"name": "lastAccessOn", "type": "DATETIME", "mandatory": false, "not-null": false, "min": "2010-01-01 00:00:00"},
{"name": "name", "type": "STRING", "mandatory": false, "not-null": false, "min": "3", "max": "30"},
{"name": "nick", "type": "STRING", "mandatory": false, "not-null": false, "min": "3", "max": "30"},
{"name": "photo", "type": "TRANSIENT", "mandatory": false, "not-null": false},
{"name": "registeredon", "type": "DATETIME", "mandatory": false, "not-null": false, "min": "2010-01-01 00:00:00"},
{"name": "surname", "type": "STRING", "mandatory": false, "not-null": false, "min": "3", "max": "30"}
]
iy
{"name": "PropertyIndexTestClass", "default-cluster-id": 21, "cluster-ids": [21],
" ol
properties": [
{"name": "propl", "type": "STRING", "mandatory": false, "not-null": false},
{"name": "prop2", "type": "INTEGER", "mandatory": false, "not-null": false},
{"name": "prop3", "type": "BOOLEAN", "mandatory": false, "not-null": false},
{"name": "prop4", "type": "INTEGER", "mandatory": false, "not-null": false},
{"name": "prop5", "type": "STRING", "mandatory": false, "not-null": false}
]
1y
{"name": "SQLDropIndexTestClass", "default-cluster-id": 23, "cluster-ids": [23],
" i ol
properties": [
{"name": "prop1", "type": "DOUBLE", "mandatory": false, "not-null": false},
{"name": "prop2", "type": "INTEGER", "mandatory": false, "not-null": false}
]
}
{"name": "SQLSelectCompositeIndexDirectSearchTestClass", "default-cluster-id": 24, "cluster-ids": [24],
"properties": [
{"name": "propl", "type": "INTEGER", "mandatory": false, "not-null": false},
{"name": "prop2", "type": "INTEGER", "mandatory": false, "not-null": false}
]
+
{"name": "TestClass", "default-cluster-id": 19, "cluster-ids": [19],
"properties": [
{"name": "name", "type": "STRING", "mandatory": false, "not-null": false},
{"name": "testLink", "type": "LINK", "mandatory": false, "not-null": false, "linked-class": "TestLinkClass"}
]
}
{"name": "TestLinkClass", "default-cluster-id": 20, "cluster-ids": [20],
"properties": [
{"name": "testBoolean", "type": "BOOLEAN", "mandatory": false, "not-null": false},
{"name": "testString", "type": "STRING", "mandatory": false, "not-null": false}
]
1y
{"name": "whiz", "default-cluster-id": 12, "cluster-ids": [12],
"properties": [
{"name": "account", "type": "LINK", "mandatory": false, "not-null": false, "linked-class": "Account"},
{"name": "date", "type": "DATE", "mandatory": false, "not-null": false, "min": "2010-01-01"},
{"name": "id", "type": "INTEGER", "mandatory": false, "not-null": false},
{"name": "replyTo", "type": "LINK", "mandatory": false, "not-null": false, "linked-class": "Account"},
{"name": "text", "type": "STRING", "mandatory": true, "not-null": false, "min": "1", "max": "140"}
]
}
{"name": "classclassIndexManagerTestClassTwo", "default-cluster-id": 25, "cluster-ids": [25]
iy
{"name": "newV", "default-cluster-id": 31, "cluster-ids": [31], "super-class": "OGraphvertex",
"properties": [
{"name": "f_int", "type": "INTEGER", "mandatory": false, "not-null": false}
]
iy

{"name": "vertexA", "default-cluster-id": 32, "cluster-ids": [32], "super-class": "OGraphVertex",

204

Export format

"properties": [
{"name": "name", "type": "STRING", "mandatory": false, "not-null": false}
1
}!
{"name": "vertexB", "default-cluster-id": 34, "cluster-ids": [34], "super-class": "OGraphvertex",
"properties": [
{"name": "map", "type": "EMBEDDEDMAP", "mandatory": false, "not-null": false},
{"name": "name", "type": "STRING", "mandatory": false, "not-null": false}

]

1y

"records": [{
"@type": "d", "@rid": "#12:476", "@version": 0, "@class": "Whiz",
"id": 476,
"date": "2011-12-09 00:00:00:000",
"text": "Los a went chip, of was returning cover, In the",
"@fieldTypes": "date=t"

3o

"@type": "d", "@rid": "#12:477", "@version": 0, "@class": "Whiz",
"id": 477,
"date": "2011-12-09 00:00:00:000",
"text": "He in office return He inside electronics for $500,000 Jay",
"@fieldTypes": "date=t"

205

Import from RDBMS

NOTE: As of OrientDB 2.0, you can use the OrientDB-ETL module to import data from an RDBMS. You can use ETL also with 1.7.x by

installing it as a separate module.

OrientDB supports a subset of SQL, so importing a database created as "Relational" is straightforward. For the sake of simplicity,

consider your Relational database having just these two tables:

e POST
e COMMENT

Where the relationship is between Post and comment as One-2-M any.

TABLE POST:

dboooodboooooooooooooooo +
| id | title |
Doocofroccooocosoooocos +

| 10 | NoSQL movement |
| 20 | New OrientDB |
R CET T +

TABLE COMMENT:

s O oo +
| id | postId | text

R CEEEEE oo +
| @ 10 | First

| 12| 10 | Second

| 22 | 10 | Another

| 410 | 20 | First again

| 82 | 20 | Second Again |
s CEETEE Fommmee +

e Import using the Document M odel (relationships as links)

e Import using the Graph Model (relationships as edges)

https://github.com/orientechnologies/orientdb-etl/wiki/Import-from-DBMS

Import from a Relational Database

Relational databases typically query and manipulate data with SQL. Given that OrientDB supports a subset of SQL, it is relatively
straightfoward to import data from a Relational databases to OrientDB. You can manage imports using the Java API, OrientDB Studio

or the OrientDB Console. The examples below use the Console.

This guide covers importing into the Document M odel. Beginning with version 2.0, you can import into the Graph M odel using

the ETL Module. From version 1.7.x you can still use ETL by installing it as a separate module

For these examples, assume that your Relational database, (referred to as reldb in the code), contains two tables: Post and

comment . The relationship between these tables is one-to-many.

reldb> SELECT * FROM post;

| 10 | NoSQL movement |
| 20 | New OrientDB |

[R Sy, Yy, +

id | postId | text |
[SRR U, Y, +
©	10	First
1	10	Second
21	10	Another
41	20	First again
82	20	Second Again
[SRS SRR, Yy, +

Given that the Relational M odel doesn't use concepts from Object Oriented Programming, there are some things to consider in the

transition from a Relational database to OrientDB.
e In Relational databases there is no concept of class, so in the import to OrientDB you need to create on class per table.

e In Relational databases, one-to-many references invert from the target table to the source table.

Table POST <- (foreign key) Table COMMENT

In OrientDB, it follows the Object Oriented M odel, so you have a collection of links connecting instances of Post and Comment .

Class POST ->* (collection of links) Class COMMENT

Exporting Relational Databases

Most Relational database management systems provide a way to export the database into SQL format. What you specifically need from

this is a text file that contains the SQL 1INsSERT commands to recreate the database from scratch. For example,

e MySQL: the mysqldump utility.
e Oracle Database: the Datapump utilities.

e Microsoft SQL Server: the Import and Export Wizard.

https://dev.mysql.com/doc/refman/5.6/en/mysqldump.html
http://www.orafaq.com/wiki/Data_Pump
https://msdn.microsoft.com/en-us/library/ms141209.aspx

When you run this utility on the example database, it produces an .sql file that contains the exported SQL of the Relational database.

DROP TABLE IF EXISTS post;
CREATE TABLE post (

id (11) NOT AUTO_INCREMENT,
title (Vo

PRIMARY KEY (id)

)i

DROP TABLE IF EXISTS comment;
CREATE TABLE comment (
id (11) NOT AUTO_INCREMENT,
postId (11),
'
PRIMARY KEY (id),
CONSTRAINT “fk_comments®
FOREIGN KEY (postId’)
REFERENCES “post™ (“id")
)

INSERT INTO POST (id, title) VALUES(10, 'NoSQL movement');
INSERT INTO POST (id, title) VALUES(20, 'New OrientDB');

INSERT INTO COMMENT (id, postId,
INSERT INTO COMMENT (id, postId,
INSERT INTO COMMENT (id, postId,
INSERT INTO COMMENT (id, postId,
INSERT INTO COMMENT (id, postId,

VALUES(©, 10, 'First');

VALUES(1, , 'Second');
VALUES(5 , 'Another');
VALUES(, , 'First again');
VALUES(, , 'Second Again');

—_—— — — —

Modifying the Export File

Importing from the Relational database requires that you modify the SQL file to make it usable by OrientDB. In order to do this, you
need to open the SQL file, (called export.sql below), in a text editor and modify the commands there. Once this is done, you can

execute the file on the Console using batch mode.

Database

In order to import a data into OrientDB, you need to have a database ready to receive the import. Note that the example export.sql

file doesn't include statements to create the database. You can either create a new database or use an existing one.

Using New Databases

In creating a database for the import, you can either create a volatile in-memory database, (one that is only available while OrientDB is
running), or you can create a persistent disk-based database. For a persistent database, you can create it on a remote server or locally
through the PLocal mode.

The recommended method is PLocal, given that it offers better performance on massive inserts.

e Using the embedded Plocal mode:

$ vim export.sql

CREATE DATABASE PLOCAL:/tmp/db/blog admin_user admin_passwd PLOCAL DOCUMENT

Here, the crReATE DATABASE command creates a new database at /tmp/db/blog .

e Using the Remote mode:

$ vim export.sql

CREATE DATABASE REMOTE:localhost/blog root_user dkdf383dhdsj PLOCAL DOCUMENT

This creates a database at the URL http://localhost/blog .

NOTE: When you create remote databases, you need the server credentials to access it. The user root and its password are
stored in the $ORIENTDB HOME/config/orientdb-server-config.xml configuration file.
Using Existing Databases

In the event that you already have a database set up and ready for the import, instead of creating a database add a line that connects to

that databases, using the connecT command.

e Using the embedded PLocal mode:

$ vim export.sh

CONNECT PLOCAL:/tmp/db/blog admin_user admin_passwd

This connects to the database at /tmp/db/blog .

e Using the Remote mode:

$ vim export.sql

CONNECT REMOTE:localhost/blog admin_user admin_passwd
This connects to the database at the URL http://localhost/blog .

Declaring Intent

In the SQL file, after you create or connect to the database, you need to declare your intention to perform a massive insert. Intents allow

you to utilize automatic tuning OrientDB for maximum performance on particular op erations, such as large inserts or reads.

$ vim export.sh

DECLARE INTENT MASSIVEINSERT

Creating Classes

Relational databases have no parallel to concepts in Object Oriented programming, such as classes. Conversely, OrientDB doesn't have a

concept of tables in the Relational sense.

Modify the SQL file, changing CREATE TABLE statements to CREATE CLASS commands:

$ vim export.sql

CREATE CLASS Post
CREATE CLASS Comment

NOTE: In cases where your Relational database was created using Object Relational Mapping, or ORM, tools, such as Hibernate

or Data Nucleus, you have to rebuild the original Object Oriented Structure directly in OrientDB.

Create Links

In the Relational database, the relationship between the post and comment was handled through foreign keys on the id fields.

OrientDB handles relationships differently, using links between two or more records of the Document type.

By default, the creaTE LINk command creates a direct relationship in your object model. Navigation goes from Post to Comment and
not vice versa, which is the case for the Relational database. You'll need to use the inverse keyword to make the links work in both

directions.

Add the following line after the INSERT statements.

http://www.hibernate.org
http://www.datanucleus.org

$ vim export.sql

CREATE LINK comments TYPE LINKSET FROM comment.postId TO post.id INVERSE

Remove Constraints

Unlike how Relational databases handle tables, OrientDB does not require you to create a strict schema on your classes. The properties
on each class are defined through the 1nserT statements. That is, id and title on Post and id , postId and text on

Comment .

Given that you created a link in the above section, the property postid is no longer necessary. Instead of modifying each 1nNSERT

statement, you can use the uppATE command to remove them at the end:
$ vim export.sql
UPDATE comment REMOVE postId

Bear in mind, this is an optional step. The database will still function if you leave this field in place.

Expected Output

When you've finished, remove any statements that OrientDB does not support. With the changes above this leaves you with a file

similar to the one below:
$ cat export.sql
CONNECT plocal:/tmp/db/blog admin admin
DECLARE INTENT MASSIVEINSERT

CREATE CLASS Post
CREATE CLASS Comment

INSERT INTO Post (id, title) VALUES(10, 'NoSQL movement')
INSERT INTO Post (id, title) VALUES(20, 'New OrientDB')

INSERT INTO Comment (id, postId, text) VALUES(0, 10, 'First')

INSERT INTO Comment (id, postId, text) VALUES(1, 10, 'Second')

INSERT INTO Comment (id, postId, text) VALUES(21, 10, 'Another')
INSERT INTO Comment (id, postId, text) VALUES(41, 20, 'First again')
INSERT INTO Comment (id, postId, text) VALUES(82, 20, 'Second Again')

CREATE LINK comments TYPE LINKSET FROM Comment.postId TO Post.id INVERSE
UPDATE Comment REMOVE postId

Importing Databases

When you finish modifying the SQL file, you can execute it through the Console in batch mode. This is done by starting the Console
with the SQL file given as the first argument.

$ SORIENTDB_HOME/bin/console.sh export.sql

When the OrientDB starts, it executes each of the commands given in the SQL files, creating or connecting to the database, creating the

classes and inserting the data from the Relational database. You now have a working instance of OrientDB to use.

Using the Database

You now have an OrientDB Document database where relationships are direct and handled without the use of joins.

e Query for all posts with comments:

orientdb> SELECT FROM Post WHERE comments.size() >

e Query for all posts where the comments contain the word "flame" in the text property:

orientdb> SELECT FROM Post WHERE comments CONTAINS(

LIKE '%flame%')

e Query for all posts with comments made today, assuming that you have added a date property to the comment class:

orientdb> SELECT FROM Post WHERE comments CONTAINS(>

'2011-04-14 00:00:00")

For more information, see

e SQL commands

e Console-Commands

Import from RDBMS to Graph Model

To import from RDBMS to OrientDB using the Graph M odel the ETL tool is the suggested way to do it. Take a look at: Import from
CSV to a Graph.

http://www.orientechnologies.com/docs/last/orientdb-etl.wiki/Import-from-CSV-to-a-Graph.html

Import from Neo4j

Neod4j is an open-source graph database that queries and manipulates data using its own Cypher Query Language.
For more information on the differences between Neo4j and OrientDB, please refer to the OrientDB vs. Neo4j page.

Neo4j and Cypher are registered trademark of Neo Technology, Inc.

Migration Strategies

Importing data from Neo4j into OrientDB is a straightforward process.
To migrate, please choose one of the following strategies:

1. Use the Neo4j to OrientDB Importer
o Starting from OrientDB version 2.2, this is the preferred way to migrate from Neo4j, especially for large and complex datasets.
The Neo4j to OrientDB Importer allows you to migrate Neo4j's nodes, relationships, unique constraints and indexes. For more
details, please refer to the Neo4j to OrientDB Importer section
2. Use GraphML
o GraphML is an XM L-based file format for graphs. For more details, please refer to the section Import from Neo4j using
GraphML

Note: if your data is in CSV format, you can migrate to OrientDB using the OrientDB's ETL tool.

http://orientdb.com/orientdb-vs-neo4j/

Neo4j to OrientDB Importer

The Neo4j to OrientDB Importer is a tool that can help you importing in a quick way a Neo4j graph database into OrientDB.
Imported Neo4j items are:

e nodes

relationships
e unique constraints

e indexes

Neo4j and Cypher are registered trademark of Neo Technology, Inc.

Supported Versions

Currently, the Neo4;j to OrientDB Importer supports, and has been tested with, the following versions:

e OrientDB: 2.2.x, 3.0.x
e Neodj: 3.x

Limitations

The following limitations apply:

e Currently only local migrations are allowed.
e Schema limitations:
o In case a node in Neo4j has multiple Labels, it will be imported into a single OrientDB class
("MultipleLabelNeo4jConversion").

m Note that the information about the original set of Labels is not lost but stored into an internal property of the imported
vertex ("Neo4jLabelList"). As aresult, it will be possible to query nodes with a specific Neo4j Label. Note also that the
nodes imported into the single class "MultipleLabelNeo4jConversion" can then be moved to other classes , according to
your specific needs, using the M OVE VERTEX command. For more information, please refer to this Section.

o Neodj Nodes with same Label but different case, e.g. LABEL and LAbel will be aggregated into a single OrientDB vertex
Class .
o Neo4j Relationship with same name but different case, e.g. relaTIONship and RELATIONSHIP will be aggregated into a single
OrientDB edge class

o Migration of Neodj's "existence" constraints (only available in the Neo4j's Enterprise Edition) is currently not implemented.

Installation

The Neo4j to OrientDB Importer is provided as an external plugin for the OrientDB Server, and is available as a zip or tar.gz

archive.

Please download the plugin from maven central:
http://central.maven.org/maven2/com/orientechnologies/orientdb-neo4j-importer/2.2.37/orientdb-neo4j-importer-2.2.37.tar.gz

Replace tar.gz with zip forthe zip archive.

To install the plugin, please unpack the archive on your OrientDB server directory (please make sure that the version of your OrientDB
server and the version of the Neo4j to OrientDB Importer are the same. Upgrade your OrientDB server, if necessary). On Linux

systems, to unpack the archive you can use a command like the following:

tar xfv orientdb-neo4j-importer-2.2.37.tar.gz -C path_to_orientDB/ --strip-components=1

Migration Scenarios

A typical migration scenario consists of the following steps:

e A copy of the Neodj's database graph directory (typically graph.db) is created into a safe place

e OrientDB is installed

e The Neo4j to OrientDB Importer is installed

e The migration process is started from the command line, passing to the Neo4j to OrientDB Importer the copy of the Neo4j's
database directory created earlier

e OrientDB (embedded or server) is started and the newly imported graph database can be used
Notes:

e Since currently only exclusive, local , connections are allowed, during the migration there must be no running servers on the

Neod4j's database directory and on the target OrientDB's import directory.
e As an alternative of creating a copy of the Neo4j's database directory, and in case you can schedule a Neo4j shutdown, you can:

o Shutdown your Neo4j Server
o Start the migration by passing the original Neo4j's database directory to the Neo4j to OrientDB Importer (a good practice is to
create a back-up first)

Usage

After Installation, the Neo4j to OrientDB Importer can be launched using the provided orientdb-neo4j-importer.sh script (or

orientdb-neo4j-importer.bat for Windows systems).
Syntax

OrientDB-Neo4j-Importer
-neo4jlibdir <neo4jlibdir> (mandatory)
-neo4jdbdir <neo4jdbdir> (mandatory)
[-odbdir <odbdir>]
[-o0 true|false]
[-i true|false]

Where:

e neodjlibdir (mandatory option) is the full path to the Neo4j lib directory (e.g. D:\neo4j\neo4j-community-3.0.7\1ib). On

Windows systems, this parameter must be the first passed parameter.

e neodjdbdir (mandatory option) is the full path to the Neo4j’s graph database directory (e.g D:\neo4j\neo4j-community-
3.0.7\data\databases\graph.db).

e odbdir (optional) is the full path to a directory where the Neo4j database will be migrated. The directory will be created by the
import tool. In case the directory exists already, the Neo4j to OrientDB Importer will behave accordingly to the value of the option

o (see below). The default value of odbdir is $ORIENTDB_HOME/databases/neo4j_import .

e o (optional). If true the odbdir directory will be overwritten, if it exists. If false and the odbdir directory exists, a warning

will be printed and the program will exit. The default value of o is false .

e i (optional). If true aunique index on the property Neo4jrRelId will be created, for all migrated edge classes. This allows you to

query relationships by original Neo4j relationship Ids. The default value of i is false .

If the Neo4j to OrientDB Importer is launched without parameters, it fails because -neo4jlibdir and -neo4jdbdir are mandatory.

Example

A typical import command looks like the following (please adapt the value of the -neo4jlibdir and -neo4jdbdir parameters to your

specific case):

Windows:

orientdb-neo4j-importer.bat -neo4jlibdir="D:\neo4j\neo4j-community-3.0.7\1ib" -neo4jdbdir="D:\neo4j\neo4j-community-3.0.7\data
\databases\graph.db"

Linux / Mac:

./orientdb-neo4j-importer.sh -neo4jlibdir /mnt/d/neo4j/neo4j-community-3.0.7/1ib -neo4jdbdir /mnt/d/neo4j/neo4j-community-3.0.
7/data/databases/graph.db

Migration Details

Internally, the Neo4j to OrientDB Importer makes use of the Neo4j's java API to read the graph database from Neo4j and of the
OrientDB's java API to store the graph into OrientDB.

The import consists of four phases:

e Phase 1: Initialization of the Neo4j and OrientDB servers
e Phase 2: Migration of nodes and relationships
e Phase 3: Schema migration

e Phase 4: Shutdown of the servers and summary info

General Migration Details

The following are some general migration details that is good to keep in mind:

e During the import, OrientDB's waAL and wAL_SYNC_ON_PAGE_FLUSH are disabled, and OrientDB is prepared for massive inserts

(OIntentMassivelnsert).
e In case a node in Neo4j has no Label, it will be imported in OrientDB into the Class "GenericClassNeo4jConversion".

e Starting from version 2.2.14, in case a node in Neo4j has multiple Labels, it will be imported into the class

"MultipleLabelNeo4jConversion". Before 2.2.14, only the first Label was imported.
e List of original Neo4j Labels are stored as properties in the imported OrientDB vertices (property: "Neo4jLabelList").

e During the import, a not unique index is created on the property "Neo4jLabelList". This allows you to query by Label even over
nodes migrated into the single class "MultipleLabelNeo4jConversion", using queries like: SELECT FROM V WHERE Neo4jlLabellist
CONTAINS 'your_label here' or the equivalent with the M ATCH syntax: MATCH {class: V, as: your_alias, where:

(Neo4jLabelList CONTAINS 'your_label'} RETURN your_alias

e Original Neo4j 1ps are stored as properties in the imported OrientDB vertices and edges (Neo4jNodeID for vertices and

Neo4jRelID for edges). Such properties can be (manually) removed at the end of the import, if not needed.

e During the import, an OrientDB index is created on the property Neo4jNodeId for all imported vertex classes (node's Labels in
Neod4j). This is to speed up vertices lookup during edge creation. The created indexes can be (manually) removed at the end of the

import, if not needed.

e In case a Neo4j Relationship has the same name of a Neo4j Label, e.g. "RelationshipName", the Neo4j to OrientDB Importer will

import that relationship into OrientDB in the class E_RelationshipName (i.e. prefixing the Neodj's RelationshipType with an

E_).

e During the creation of properties in OrientDB, Neo4j char datatypeis mappedtoa string datatype.

Details on Schema Migration

The following are some schema-sp ecific migration details that is good to keep in mind:

e If in Neodj there are no constraints or indexes, and if we exclude the properties and indexes created for internal purposes

(Neo4jNodeID , Neo4jRelID , NeodjLabellList and correspondingindexes), the imported OrientDB database is schemaless.

e If in Neo4j there are constraints or indexes, the imported OrientDB database is schema-hybrid (with some properties defined). In

particular, for any constraint and index:

http://orientdb.com/docs/last/Configuration.html#storageusewal
http://orientdb.com/docs/last/Configuration.html#storagewalsynconpageflush

o The Neo4j property where the constraint or index is defined on, is determined.
o A corresponding property is created in OrientDB (hence the schema-hybrid mode).
e If a Neo4j unique constraint is found, a corresponding unique index is created in OrientDB

o In case the creation of the unique index fails, a not unique index will be created. Note: this scenario can happen, by design,
when migrating nodes that have multiple Labels, as they are imported into a single vertex class).

e If a Neo4j index is found, a corresponding (not unique) OrientDB index is created.

Migration Best Practices

Below some migration best practices.

1. Check if you are using Labels with same name but different case, e.g. LABEL and LAbel and if you really need them. If the correct
Label is Label, change LABEL and LAbel to Label in the original Neo4j database before the import. If you really cannot change
them, be aware that with the current version of the Neo4j to OrientDB Importer such nodes will be aggregated into a single

OrientDB vertex class .

2. Check if you are using relationships with same name but different case, e.g. relaTIONship and RELATIONSHIP and if you really
need them. If the correct relationship is Relationship, change relaTIONship and RELATIONSHIP to Relationship before the import.
If you really cannot change them, be aware that with the current version of the Neo4j to OrientDB Importer such relationships will

be aggregated into a single OrientDB edge class .

3. Check your constraints and indexes before starting the import. Sometime y ou have more constraints or indexes than needed, e.g. old
ones that you created on Labels that you are not using anymore. These constraints will be migrated as well, so a best practice is to
check that you have defined, in Neo4j, only those that you really want to import. To check constraints and indexes in Neo4j, you

can type :schema in the Browser and then click on the "play" icon. Please delete the not needed items.

4. Check if you are using nodes with multiple Labels, and if you really need more than one Label on them. Be aware that with current
version of the Neo4j to OrientDB Importer such nodes with multiple Labels will be imported into a single OrientDB class

("MultipleLabelNeo4jConversion™).

Migration Log

During the migration, a log file is created.

The log can be found at path_to_orientDB/log/orientdb-neo4j-importer.log

Migration Monitoring

During the migration, for each imported Neo4j items (nodes, relationships, constraints and indexes) a completion percentage is written in

the shell from where the import has been started, thus allowing to monitor progresses.

For large imports, a best practice is to monitor also the produced import log, using a program like tail ,e.g

tail -f -n 100 -f path_to_orientDB/log/orientdb-neo4j-importer.log

Migration Troubleshooting

In case of problems, the details of the occurred errors are written in the migration log file. Please use this file to troubleshoot the

migration.

Connecting to the newly imported Database

After the migration process, you may start an OrientDB server using the server.sh or server.bat scripts.

You can connect to the newly imported database through Studio or the Console using the OrientDB's default database users, e.g. using

the user admin and password admin.
Please secure your database by removing the default users, if you don't need them, or by creating new users.

For further information on using OrientDB, please refer to the Getting Started Guide.

Query Strategies

This section includes a few strategies that you can use to query your data after the import.

As first thing, please be aware that in OrientDB you can query your data using both SQL or pattern matching. In case you are familiar
with Neo4j's Cypher query language, it may be more easy for you to use our pattern matching (see our M ATCH syntax for more

details). However, keep in mind that depending on your specific use case, our SQL can be of great help.

Counting all nodes
To count all nodes (vertices):

Neodj's Cypher OrientDB's SQL

MATCH (n) RETURN count(n) SELECT COUNT(*) FROM V

Counting all relationships

To count all relationships (edges):
Neodj's Cypher OrientDB's SQL

MATCH ()-->() RETURN count(*) SELECT COUNT(*) FROM E

Querying nodes by original Neo4j ID

If you would like to query nodes by their original Neo4j Node ID, you can use the property Neo4jNodelD, which is created

automatically for you during the import, and indexed as well.

To query a node that belongs to a specific class with name ClassName, you can execute a query like:

SELECT FROM ClassName WHERE Neo4jNodeID = your_id_here

To query a node regardless of the class where it has been included in, you can use a query like:

SELECT FROM V WHERE Neo4jNodeID = your_id_here

Querying relationships by original Neo4j ID

The strategy to query relationships by their original Neo4j Relationship ID, will be improved in the next hotfix (see GitHub Issue #9,

which also includes a workaround).

Querying nodes by original Neo4j Labels

In case the original nodes have just one Label, they will be migrated in OrientDB into a class that has name equals to the Neo4j's

Label name. In this simple case, to query nodes by Label you can execute a query like the following:

http://orientdb.com/docs/master/Commands.html
http://orientdb.com/docs/master/SQL-Match.html
https://github.com/orientechnologies/orientdb-neo4j-importer/issues/9

Neodj's Cypher OrientDB's SQL

SELECT FROM LabelName

MATCH (n y LabelName) RETURN n or usj_ng our MATCH syntax:

MATCH {class: LabelName, as: n} RETURN
n

More generally speaking, since the original Neo4j Label is stored inside the property Neo4jLabelList, to query imported nodes (vertices)

using their original Neo4j Label, you can use queries like the following:

Neodj's Cypher OrientDB's SQL

SELECT * FROM V WHERE Neo4jlLabellList
CONTAINS 'LabelName'

MATCH (n:LabelName) RETURN n or using our MATCH syntax:

MATCH {class: V, as: n, where:
(Neo4jLabellList CONTAINS 'LabelName')}
RETURN n

This is, in particular, the strategy that must be followed in case the original Neo4j's nodes have multiple Labels (and are hence migrated
into the single OrientDB class MultipleLabelNeo4jConversion).

Note that the property Neo4jLabelList has an index on it.

Migration Example

A complete example of a migration from Neo4;j to OrientDB using the Neo4j to OrientDB Importer can be found in the section Tutorial:

Importing the northwind Database from Neo4;.

Roadmap

A list of prioritized enhancements for the Neo4j to OrientDB Importer, along with some other project information can be found here.

1. In case original nodes in Neo4j have multiple Labels, they are imported into a single OrientDB vertex Class. Depending on
the specific use case, after the migration, it may be useful to manually move vertices to other Classes. How can this be done?

First, please note that there is an open enhancement request about having a customized map ping between Neo4j Labels and OrientDB

classes . Until it is implemented, a possible strategy to quickly move vertices into other classes is to usethe Move VERTEX syntax.
The following are the steps to follow:
A - Create the classes where you want to move the vertices.
When creating the classes , please keep in mind the following:

e Define the following properties:
o Neo4jNodelD of type LONG
o NeodjLabelList of type EmbeddedList String

Example:

https://github.com/orientechnologies/orientdb-neo4j-importer/projects/1
https://github.com/orientechnologies/orientdb-neo4j-importer/issues/8

CREATE CLASS YourNewClassHere EXTENDS V
CREATE PROPERTY YourNewClassHere.Neo4jNodeID LONG
CREATE PROPERTY YourNewClassHere.Neo4jlLabellList EMBEDDEDLIST STRING

B - Select all vertices that have a specific Neo4j Label, and then move them to your new class . To do this you can use a query like:

MOVE VERTEX (
SELECT FROM MultiplelLabelNeo4jConversion
WHERE Neo4jLabelList CONTAINS 'Your Neo4j Label here'

)
TO CLASS:YourNewClassHere BATCH 10000

(use a batch size appropriate to your specific case).

C - Create the following indexes in your new Cclasses :

e A unique index on the property Neo4jNodelD
e A not unique index on the property Neo4jLabelList

Important: creation of the indexes above is crucial in case you will want to query vertices using their original Neo4j node IDs or Labels.

Example:

CREATE INDEX YourNewClassHere.Neo4jNodeID ON YourNewClassHere(Neo4jNodeID) UNIQUE
CREATE INDEX YourNewClassHere.Neo4jLabelList ON YourNewClassHere(Neo4jlLabellList) NOTUNIQUE

2. Not all constraints have been imported. Why?

By design, there are certain cases where not all the constraints can be imported. It may be that you are in one of these cases. When
nodes are aggregated into a single class (either because that node has multiple Labels or because there are Labels with the same name
but different case, e.g. LABEL and LAbel) not all constraints can be imported: the creation of unique indices in OrientDB will probably
fail; as a workaround the Importer will try to create not unique indexes, but when aggregating nodes into a single class , number of
created constraints will be probably less than number of constraints in Neo4j, even after the creation of the not unique indexes. This in
general may or may not be a problem depending on your specific case. Please feel free to open an issue if you believe you incurred into a

bug.

https://github.com/orientechnologies/orientdb-neo4j-importer/issues

Tutorial: Importing the northwind Database from Neo4j

In this tutorial we will use the Neo4j to OrientDB Importer to import the Neo4j northwind example database into OrientDB.
For general information on the possible Neo4j to OrientDB migration strategies, please refer to the Import from Neo4j section.

Neodj and Cypher are registered trademark of Neo Technology, Inc.

Preparing for the migration

Please download and install OrientDB:

$ wget https://s3.us-east-2.amazonaws.com/orientdb3/releases/2.2.37/orientdb-community-2.2.37.zip -0 orientdb-community-2.2.37
.zip
$ unzip orientdb-community-2.2.37

Download and install the Neo4j to OrientDB Importer:

$ wget http://central.maven.org/maven2/com/orientechnologies/orientdb-neo4j-importer/2.2.37/orientdb-neo4j-importer-2.2.37.tar
.9z

$ tar xfv orientdb-neo4j-importer-2.2.37.tar.gz -C orientdb-community-2.2.37 --strip-components=1
For further information on the OrientDB's installation, please refer to this section.

For further information on the Neo4j to OrientDB Importer installation, please refer to this section.

Starting the migration

Assuming that:
® /home/santo/neo4j/neo4j-community-3.0.7/1ib is the full path to the directory that includes the Neo4j's libraries
® /home/santo/data/graph.db_northwind is the full path to the directory that contains the Neodj's northwind database

® /home/santo/orientdb/orientdb-community-2.2.12/databases/northwind_import is the full path to the directory where you would

like to migrate the northwind database
e that no Neo4j and OrientDB servers are running on those directories

you can import the northwind database with a command similar to the following:

./orientdb-neo4j-importer.sh \
-neo4jlibdir /home/santo/neo4j/neo4j-community-3.0.7/1ib \
-neo4jdbdir /home/santo/neo4j/data/graph.db_northwind \
-odbdir /home/santo/orientdb/orientdb-community-2.2.12/databases/northwind_import

For further information on how to use the Neo4j to OrientDB Importer, please refer to this section.

Migration output

The following is the output that is written by the Neo4j to OrientDB Importer during the northwind database migration:

Neo4j to OrientDB Importer v.2.2.12-SNAPSHOT - Copyrights (c) 2016 OrientDB LTD

WARNING: 'o' option not found. Defaulting to 'false'.

Please make sure that there are no running servers on:
' /home/santo/neo4j/data/graph.db_northwind' (Neo4j)
and:
' /home/santo/orientdb/orientdb-community-2.2.12/databases/northwind_import' (OrientDB)

Initializing Neo4j...Done

Initializing OrientDB...Done

Importing Neo4j database:
' /home/santo/neo4j/data/graph.db_northwind'
into OrientDB database:
' /home/santo/orientdb/orientdb-community-2.2.12/databases/northwind_import'

Getting all Nodes from Neo4j and creating corresponding Vertices in OrientDB...
1035 OrientDB Vertices have been created (100% done)
Done

Creating internal Indices on property 'Neo4jNodeID' on all OrientDB Vertices Classes...
5 OrientDB Indices have been created (100% done)
Done

Getting all Relationships from Neo4j and creating corresponding Edges in OrientDB...
3139 OrientDB Edges have been created (100% done)
Done

Getting Constraints from Neo4j and creating corresponding ones in OrientDB...
0 OrientDB Indices have been created
Done

Getting Indices from Neo4j and creating corresponding ones in OrientDB...
5 OrientDB Indices have been created (100% done)
Done

Import completed!

Shutting down OrientDB...Done
Shutting down Neo4j...Done

- Found Neo4j Nodes 1 1035

-- With at least one Label 1 1035

--- With multiple Labels r0

-- Without Labels : 0

- Imported OrientDB Vertices 1 1035 (100%)
- Found Neo4j Relationships 1 3139

- Imported OrientDB Edges 1 3139 (100%)
- Found Neo4j Constraints : 0

- Imported OrientDB Constraints (Indices created) HC]

- Found Neo4j (non-constraint) Indices 5]

- Imported OrientDB Indices : 5 (100%)

- Additional created Indices (on vertex properties 'Neo4jNodeID') 3 B

- Total Import time: 1 29 seconds

-- Initialization time seconds

-- Time to Import Nodes seconds (181.67 nodes/sec)
seconds (459.79 rels/sec)

seconds (1.21 indices/sec)

-- Time to Import Relationships
-- Time to Import Constraints and Indices
-- Time to create internal Indices (on vertex properties 'Neo4jNodeID')

A A N O N

seconds (1.22 indices/sec)

Connecting to the newly imported Database

General information on how to connect to a newly imported database can be found in this section.

The following is a partial visualization of the northwind database done with the Graph Editor included in the OrientDB's Studio tool:

http://localh..io/index.html X + - X
€ localhost:2480/studio/index.htmi#/database/northwind_import/graph <] wBe ¥ & 9 = F-

v
)Ori:‘_—‘- nt @ BROWSE = SCHEMA & SECURITY O GRAPH <> FUNCTIONS Eo8 & NORTHWIND_IMPORT (ADMIN) ~

Product: . :
3 Graph Editor @ o x & |wom-

1 select * from v

Run: Ctrl + Return | Undo: Ctrl/Cmd + Z | Redo: Ctrl/Cmd + Shift + 7

Limit| 2
Search : Ctrl/Cmd + F | Toggle Comment: Ctrl/Cmd + / | Autocomplete: Ctrl + Spaca s 200

@class c . Product
:I Supplier
NeodjNodelD 15 @ category
O Customer
unitPrice 745 == PART_OF
== SUPPLIES
unitsinStock

reorderLevel

supplierlD

productiD

quantityPerU

As you can see from the Limit field, the visualization is limited to 200 vertices.

The following, instead, is the graph returned by the following M ATCH query (the query returns all nodes connected to the Order with
orderiD 10344):

MATCH {class: Order, where: (orderID = 10344)}--{as: n} RETURN $pathelements

v
}DW_‘HT K SCHEMA & SECURITY OGRAPH <» FUNCTIONS =08 & northwind (root) v

a1 Graph Editor @ O ¢ = uox

MATCH {class: Order, where: (orderID = 19344)}--{as: n} RETURN $pathelements

Order#57:12
=
Properties
Run: Cirl + Return | Undo: Ctrl/Cmd + Z | Redo: Ctrl/Cmd + Shift + Z

] #5712 -
@ Search : CirliCmd +F | Toggle Comment: Cirl/Cmd + / | Autocomplete: Cirl + Space &

@class Order . Product
(D) Order :
NeodjNodelD 301 @ customer { \ ORDERS
=== ORDERS
Seattle = PURCHASED Qﬁc Chef Anton’s Cajun Seasoning
St
orgeriD
freight
White Clover Markets Northwoods Cranberry Sauce
requiredDate 1996-11-29 00:00:00.000
employeelD
shipName White Clover Markets
shipPostalCode 98124
shipCountry USA <

From Studio's Schema M anager, you can check all imported Vertex Classes (node Labels in Neo4j), Edge Classes (Relationship Types in
Neo4j), and Indexes:

.
}‘: rient @ BROWSE = SCHEMA & SECURITY OGRAPH <> FUNCTIONS D] & northwind (root) v

Schema Manager 2] + NEWCLASS i= ALLINDEXES REBUILD ALL INDEXES
Search class
Name @ Color SuperClasses @ Alias Abstract Clusters @ Default Cluster Cluster Selection @ Records Actions
Category El v [33,34,35,36,37,38,39,40] 33 round-robin v 8 m SQUERYALL +NEW RECORD
Customer \ [49,50,51,52,53,54,55 56] 49 round-robin__ v | 91 m =QUERYALL +NEWRECORD [CDL0d
E El [17,18.19,20.21,22, 23 24] 17 round-robin__* 3139 EETIT SaueRvALL #NEWRECORD
OFunction [6] 6 round-robin_ 0 EEIT =QUERYALL +NEWRECORD
Oldentity El e HI = round-fobin ¥ 6 [EXd =QUERYALL +NEW RECORD
ORDERS E [89.90,91,92,93,94,95,96] 89 round-robin__ v | 2,155 [EITE =ouervall +newrecorn [T
ORestricted El & (3]} =1 round-robin__* 0 EEIEE =auervail +newrecoro [T
ORole Oldentity 14] 4 round-robin v 3 EEIT =QUERYALL +NEWRECORD
OSchedule El 8] 8 round-robin__ 0 [ET =QUERYALL +NEW RECORD
Osequence m 7 round-robin_+ | 0 =TT =cuemvALL +NEWRECORD
OTriggered El - Z)] - round-robin__ v 0 EEIEE =auervalL +newrecoro [T
OUser ,m Oldentity 15] 5 round-robin v 3 [EIXE =auervaLL +NewRrecorn LGS =

v and E are special classes: they include all Vertices and all Edges.

Import from Neo4j using GraphML

This section describes the process of importing data from Neo4j to OrientDB using GraphM L. For general information on the possible

Neo4j to OrientDB migration strategies, please refer to the Import from Neo4j section.

Neo4j can export in GraphM L, an XM L-based file format for graphs. Given that OrientDB can read GraphML, you can use this file

format to import data from Neo4j into OrientDB, using the Console or the Java API.
Note:
For large and complex datasets, the preferred way to migrate from Neo4j is using the Neo4j to OrientDB Importer.

Neo4j and Cypher are registered trademark of Neo Technology, Inc.

Exporting GraphML

In order to export data from Neo4j into GraphM L, you need to install the Neo4j Shell Tools plugin. Once you have this package

installed, you can use the export-graphml utility to export the database.

1. Change into the Neo4j home directory:

$ cd /path/to/neo4j-community-2.3.2

2. Download the Neo4j Shell Tools:

$ curl http://dist.neo4j.org/jexp/shell/neodj-shell-tools_2.3.2.zip \

-0 neo4j-shell-tools.zip

3. Unzip the neo4j-shell-tools.zip fileinto the 1ib directory:

$ unzip neodj-shell-tools.zip -d lib

4. Restart the Neo4j Server. In the event that it's not running, start it:

$./bin/neo4j restart

5. Once you have Neo4j restarted with the Neo4j Shell Tools, launch the Neo4j Shell tool, located in the bin/ directory:
$./bin/neo4j-shell
Welcome to the Neo4j Shell! Enter 'help' for a list of commands

NOTE: Remote Neo4j graph database service 'shell' at port 1337

neo4j-sh (0)$

6. Export the database into GraphM L:

neo4j-sh (0)$ -graphml -t -o /tmp/out.graphml
Wrote to GraphML-file /tmp/out.graphml 0. 100%: nodes = 302 rels = 834
properties = 4221 time 59 sec total 59 sec

This exports the database to the path /tmp/out.graphml .

Importing GraphML

https://github.com/jexp/neo4j-shell-tools
http://docs.neo4j.org/chunked/stable/shell.html

There are three methods available in importing the GraphM L file into OrientDB: through the Console, through Gremlin or through the
Java APIL.

Importing through the OrientDB Console

For more recent versions of OrientDB, you can import data from GraphM L through the OrientDB Console. If you have version 2.0 or

greater, this is the recommended method given that it can automatically translate the Neo4;j labels into classes.

1. Loginto the OrientDB Console.

$ SORIENTDB_HOME/bin/console.sh

2. In OrientDB, create a database to receive the import:
orientdb> CREATE DATABASE PLOCAL:/tmp/db/test
Creating database [plocal:/tmp/db/test] using the storage type [plocal]...

Database created successfully.

Current database is: plocal:/tmp/db/test

3. Import the data from the GraphML file:
orientdb {db=test}> IMPORT DATABASE /tmp/out.graphml

Importing GRAPHML database database from /tmp/out.graphml...
Transaction 8 has been committed in 12ms

This imports the Neo4j database into OrientDB on the test database.

Importing through the Gremlin Console

For older versions of OrientDB, you can import data from GraphM L through the Gremlin Console. If you have a version 1.7 or earlier,
this is the method to use. It is not recommended on more recent versions, given that it doesn't consider labels declared in Neo4;. In this
case, everything imports as the base vertex and edge classes, (that is, v and E). This means that, after imp orting through Gremlin

you need to refactor you graph elements to fit a more structured schema.
To import the GraphML file into OrientDB, comp lete the following steps:

1. Launch the Gremlin Console:
$ SORIENTDB_HOME/bin/gremlin.sh

\III/
(o 0)

2. From the Gremlin Console, create a new graph, specifying the path to your Graph database, (here /tmp/db/test):

gremlin> g = new OrientGraph('"plocal:/tmp/db/test");
==>orientgraph[plocal:/db/test]

3. Load the GraphML file into the graph object (that is, g):

g remlin> g.loadGraphML("/tmp/out.graphml");
==>null

4. Exit the Gremlin Console:

gremlin> quit
This imports the GraphML file into your OrientDB database.

Importing through the Java API

OrientDB Console calls the Java API. Using the Java API directly allows you greater control over the import process. For instance,

new OGraphMLReader (new OrientGraph('plocal:/temp/bettergraph")).inputGraph("/temp/neo4j.graphml™);
This line imports the GraphML file into OrientDB.

Defining Custom Strategies

Beginning in version 2.1, OrientDB allows you to modify the import process through custom strategies for vertex and edge attributes. It

supports the following strategies:

® com.orientechnologies.orient.graph.graphml.0IgnoreGraphMLImportStrategy Defines attributes to ignore

® com.orientechnologies.orient.graph.graphml.ORenameGraphMLImportStrategy Defines attributes to rename
Examples

e Ignore the vertex attribute type :

new OGraphMLReader (new OrientGraph('"plocal:/temp/bettergraph")).defineVertexAttributeStrategy(" type ", new OIgnoreGrap
hMLImportStrategy()).inputGraph("/temp/neo4j.graphml");

e Ignore the edge attribute weight :

new OGraphMLReader (new OrientGraph("plocal:/temp/bettergraph")).defineEdgeAttributeStrategy("weight", new OIgnoreGraphMLI
mportStrategy()).inputGraph("/temp/neo4j.graphml");

e Rename the vertex attribute type injust type :

new OGraphMLReader (new OrientGraph("plocal:/temp/bettergraph")).defineVertexAttributeStrategy(" type ", new ORenameGrap
hMLImportStrategy("type")).inputGraph("/temp/neo4j.graphml™);

Import Tips and Tricks

Dealing with Memory Issues

In the event that you exp erience memory issues while attempting to import from Neo4j, you might consider reducing the batch size. By

default, the batch size is set to 10ee . Smaller value causes OrientDB to process the import in smaller units.

e Import with adjusted batch size through the Console:

orientdb {db=test}> IMPORT DATABASE /tmp/out.graphml batchSize=100

e Import with adjusted batch size through the Java API:

new OGraphMLReader (new OrientGraph("plocal:/temp/bettergraph")).setBatchSize() .inputGraph("/temp/neo4j.graphml");

Storing the Vertex ID's

By default, OrientDB updates the import to use its own ID's for vertices. If you want to preserve the original vertex ID's from Neo4j,

use the storevertexIds option.

e Import with the original vertex ID's through the Console:

orientdb {db=test}> IMPORT DATABASE /tmp/out.graphml storeVertexIds=true

e Import with the original vertex ID's through the Java API:

new OGraphMLReader (new OrientGraph("plocal:/temp/bettergraph")).setStoreVertexIds(true).inputGraph("/temp/neo4j.graphml™)

’

Example

A complete example of a migration from Neo4j to OrientDB using the GraphM L method can be found in the section Tutorial: Importing

the movie Database from Neod4;.

Tutorial: Importing the movie Database from Neo4;j

In this tutorial we will follow the steps described in the Import from Neo4j using GraphM L section to import the Neo4j's movie

examp le database into OrientDB.

We will also provide some examples of queries using the OrientDB's M AT CH syntax, making a comparison with the corresponding

Neo4j's Cypher query language.
For general information on the possible Neo4j to OrientDB migration strategies, please refer to the Import from Neo4j section.

Neo4j and Cypher are registered trademark of Neo Technology, Inc.

Exporting from Neo4j

Assuming you have already downloaded and unpacked the Neo4j Shell Tools, and restarted the Neo4j Server, as described in the Section

Exporting GraphML, you can export the movie database using neo4j-shell with a command like the following one:

D:\neo4j\neo4j-community-3.0.6\bin>neo4j-shell.bat

Welcome to the Neo4j Shell! Enter 'help' for a list of commands
NOTE: Remote Neo4j graph database service 'shell' at port 1337

neo4j-sh (?)$ export-graphml -t -o d:/movie.graphml

Wrote to GraphML-file d:/movies.graphml 0. 100%: nodes = 171 rels = 253 properties = 564 time 270 ms total 270 ms

In the example above the exported movie graph is stored under D:\movie.graphml .

Importing into OrientDB
In this tutorial we will import in OrientDB the file movie.graphml using the OrientDB's Console. For other GraphM L import methods,
please refer to the section Importing GraphM L.

The OrientDB's Console output generated during the import process is similar to the following (note that first we create a movie

database using the command CREATE DATABASE , and then we do the actual import using the command IMPORT DATABASE):

D:\orientdb\orientdb-enterprise-2.2.8\bin>console.bat

OrientDB console v.2.2.8-SNAPSHOT (build 2.2.x@r39259e190e16045fe1425b1c048578562fcad55b; 2016-08-23 14:38:49+0000) www.orient
db.com

Type 'help' to display all the supported commands.

Installing extensions for GREMLIN language v.2.6.0

orientdb> CREATE DATABASE PLOCAL:D:/orientdb/orientdb-enterprise-2.2.8/databases/movie

Creating database [PLOCAL:D:/orientdb/orientdb-enterprise-2.2.8/databases/movie] using the storage type [PLOCAL]...
Database created successfully.

Current database is: PLOCAL:D:/orientdb/orientdb-enterprise-2.2.8/databases/movie
orientdb {db=movie}> IMPORT DATABASE D:/movie.graphml

Importing GRAPHML database from D:/movie.graphml with options ()...

Done: imported 171 vertices and 253 edges
orientdb {db=movie}>

As you can see from the output above, as a result of the import 171 vertices and 253 edges have been created in OrientDB. This is

exactly the same number of nodes and relationships exported from Neo4;.

For more tips and tricks related to the import process, please refer to this section.

Query Comparison

https://github.com/jexp/neo4j-shell-tools

Once the movie database has been imported into OrientDB, you may use several ways to access its data.
The maTcH syntaxand the tool Studio can be used, for instance, in a similar way to the Neo4j's Cypher and Browser.

The following sections include a comparison of the Neo4j's Cypher and OrientDB's MATcH syntax for some queries that you can

execute against the movie database.

Find the actor named "Tom Hanks"

Neod4j's Cypher:

MATCH (tom:Person {name: "Tom Hanks"})
RETURN tom

OrientDB's MATCH:

MATCH {class: Person, as: tom, where: (name = 'Tom Hanks')}
RETURN $pathElements

Find the movie with title "Cloud Atlas"

Neodj's Cypher:

MATCH (cloudAtlas:Movie {title: "Cloud Atlas"})
RETURN cloudAtlas

OrientDB's MATCH:

MATCH {class: Movie, as: cloudAtlas, where: (title = 'Cloud Atlas')}
RETURN $pathElements

Find 10 people
Neodj's Cypher:

MATCH (people:Person)
RETURN people.name
LIMIT 10

OrientDB's M ATCH:

MATCH {class: Person, as: people}
RETURN people.name
LIMIT 10

Find the movies released in the 1990s

Neodj's Cypher:

MATCH (nineties:Movie)
WHERE nineties.released > 1990 AND nineties.released < 2000
RETURN nineties.title

OrientDB's M ATCH:

MATCH {class: Movie, as: nineties, WHERE: (released > 1990 AND released < 2000)}
RETURN nineties.title

List all Tom Hanks movies

Neodj's Cypher:

MATCH (tom:Person {name: "Tom Hanks"})-[:ACTED_IN]->(tomHanksMovies)
RETURN tom, tomHanksMovies

OrientDB's MATCH:

MATCH {class: Person, as: tom, where: (name = 'Tom Hanks')}-ACTED_IN->{as: tomHanksMovies}
RETURN $pathElements

Find out who directed "Cloud Atlas"

Neod4j's Cypher:

MATCH (cloudAtlas {title: "Cloud Atlas"})<-[:DIRECTED]-(directors)
RETURN directors.name

OrientDB's MATCH:

MATCH {class: Movie, as: cloudAtlas, where: (title = 'Cloud Atlas')}<-DIRECTED-{as: directors}
RETURN directors.name

Find Tom Hanks' co-actors

Neodj's Cypher:

MATCH (tom:Person {name:"Tom Hanks"})-[:ACTED_IN]->(m)<-[:ACTED_IN]-(coActors)
RETURN DISTINCT coActors.name

OrientDB's M ATCH:

MATCH {class: Person, as: tom, where: (name = 'Tom Hanks')}-ACTED_IN->{as: m}<-ACTED_IN-{class: Person,as: coActors}
RETURN coActors.name

Find how people are related to "Cloud Atlas"

Neodj's Cypher:

MATCH (people:Person)-[relatedTo]-(:Movie {title: "Cloud Atlas"})
RETURN people.name, Type(relatedTo), relatedTo

OrientDB's M ATCH:

MATCH {class: Person, as: people}--{as: m, where: (title = 'Cloud Atlas')}
RETURN $pathElements

ETL

The Extractor Transformer and Loader, or ETL, module for OrientDB provides support for moving data to and from OrientDB

databases using ETL processes.

Configuration: The ETL module uses a configuration file, written in JSON.

Extractor Pulls data from the source database.

Transformers Convert the data in the pipeline from its source format to one accessible to the target database.

Loader loads the data into the target database.

How ETL Works

The ETL module receives a backup file from another database, it then converts the fields into an accessible format and loads it into
OrientDB.

EXTRACTOR => TRANSFORMERS[] => LOADER

For example, consider the process for a CSV file. Using the ETL module, OrientDB loads the file, applies whatever changes it needs,

then stores the record as a document into the current OrientDB database.

frocoosasoooa frooccocooccsosososooconos focoococosos +
| | PIPELINE |
+ EXTRACTOR +-=---=-mmmmmmmmmmmaama Pooscocsasss +
| | TRANSFORMERS | LOADER |
frocoosasoooa froccocooccoososocooconos focoocccooos +
| FILE ==> CSV->FIELD->MERGE ==> OrientDB |
frocoosasoooa froccocooccoososocooconos focoocccooos +

You can modify this pipeline, allowing the transformation and loading phases to run in parallel by setting the configuration variable

"parallel" to true .

{"parallel": }

Installation

Beginning with version 2.0, OrientDB bundles the ETL module with the official release.

Usage
To use the ETL module, run the oetl.sh script with the configuration file given as an argument.

$ $ORIENTDB_HOME/bin/oetl.sh config-dbpedia.json

NOTE: Ifyou are importing data for use in a distributed database, then you must set
ridBag.embeddedToSbtreeBonsaiThreshold=Integer.MAX_VALUE for the ETL process to avoid replication errors,
when the database is updated online.

Run-time Configuration

When you run the ETL module, you can define its configuration variables by passing it a JSON file, which the ETL module resolves at

run-time by passing them as it starts up.

http://en.wikipedia.org/wiki/Extract,_transform,_load

You could also define the values for these variables through command-line options. For example, you could assign the database URL as

${databaseURL} , then pass the relevant argument through the command-line:

$ SORIENTDB_HOME/bin/oetl.sh config-dbpedia.json \

-databaseURL=plocal:/tmp/mydb

When the ETL module initializes, it pulls /tmp/mydb from the command-line to define this variable in the configuration file.

Available Components

e Blocks

e Sources

e Extractors

e Transformers

e Loaders
Examples:

e Import the database of Beers
e Import from CSV to a Graph
e Import from JSON

e Import DBPedia

e Import froma DBMS

e Import from Parse (Facebook)

ETL - Configuration

OrientDB manages configuration for the ETL module through a single JSON configuration file, called at execution.

Syntax
{
"config": {
<name>: <value>
H
"begin": [

{ <block-name>: { <configuration> } }
1,
"source" : {
{ <source-name>: { <configuration> } }
H
"extractor" : {
{ <extractor-name>: { <configuration> } }

3
"transformers" : [
{ <transformer-name>: { <configuration> } }

1
"loader" : { <loader-name>: { <configuration> } },
"end": [
{ <block-name>: { <configuration> } }
]
}

e "config" Manages all settings and context variables used by any component of the process.
e "source" Manages the source data to process.

e "begin" Defines a list of blocks to execute in order when the process begins.

e "extractor" Manages the extractor settings.

e "transformers" Defines a list of transformers to execute in the pipeline.

e "loader" Manages the loader settings.

e "end" Defines alist of blocks to execute in order when the process finishes.

Example

"config": {
"log": "debug",
"fileDirectory": "/temp/databases/dbpedia_csv/",
"fileName": "Person.csv.gz"
H
"begin": [
{ "let": { "name": "$filePath", "value": "$fileDirectory.append($fileName)"} },
{ "let": { "name": "$className", "value": "$fileName.substring(0, $fileName.indexOf("."))"} }
1,
"source" : {
"file": { "path": "$filePath", "lock" : true }
1y
"extractor" : {
"row": {}
iy
"transformers" : [
{ "csv": { "separator": ",", "nullvalue": "NULL", "skipFrom": 1, "skipTo": 3 } }
{ "merge": { "joinFieldName":"URI", "lookup":"V.URI" } },
{ "vertex": { "class": "$className"} }
1,
"loader" : {
"orientdb": {
"dbURL": "plocal:/temp/databases/dbpedia",
"dbuser": "admin",
"dbPassword": "admin",
"dbAutoCreate": true,
"tx": false,
"batchCommit": 1000,
"dbType": "graph",
"indexes": [{"class":"V", "fields":["URI:string"], "type":"UNIQUE" }]

General Rules

In developing a configuration file for ETL module processes, consider the following:

e You can use context variables by prefixing them with the $ sign.
e It assigns the s$input context variable before each transformation.

e You can execute an expression in OrientDB SQL with the ={<expression>} syntax. For instance,

"field": ={EVAL('3 * 5)}

Conditional Execution

In conditional execution, OrientDB only runs executable blocks, such as transformers and blocks, when a condition is found true, such as

with a wHERe clause.

For example,

{ "let": {
"name": "path"
"value": "C:/Temp",
"if": "${os.name} = 'Windows'"
}
i
{ "let": {
"name": "path"
"value": "/tmp",
"if": "${os.name}.index0f('nux')"
}
}

Log setting

Most blocks, such transformers and blocks, support the "log" setting. Logs take one of the following logging levels, (which are case-

insensitive),: NONE , ERROR , INFO , DEBUG . By default, it uses the 1nFo level.

Setting the log-level to DEBUG displays more information on execution. It also slows down execution, so use it only for development

and debugging purposes.

{ "http": {

"url": "http://ip.jsontest.com/",

"method": "GET",
"headers": {

"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_9 4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1985.12

5 Safari/537.36"

i

"log": "DEBUG"

}
}

Configuration Variables

The ETL module binds all values declared in the "config" block to the execution context and are accessible to ETL processing. There

are also some special variables used by the ETL process.

Variable

"Iog"

"maxRetries"

"parallel"

"haltOnError"

Description

Defines the global logging level. The accepted levels are: NONE , ERROR , INFO ,
and DEBUG . This parameter is useful to debug a ETL process or single
component.

Defines the maximum number of retries allowed, in the event that the loader
raises an ONeedRetryException , for concurrent modification of the same record.

Defines whether the ETL module executes pipelines in parallel, using all available
cores.

Defines whether the ETL module halts the process when it encounters
unmanageable errors. When set to false , the process continues in the event of
errors. It reports the number of errors it encounters at the end of the import. This
feature was introduced in version 2.0.9.

Split Configuration on Multiple Files

Type

string

integer

boolean

boolean

Default
value

INFO

10

false

true

You can split the configuration into several files allowing for the composition of common parts such as paths, URL's and database

references.

For example, you might split the above configuration into two files: one with the input paths for person.csv specifically, while the

other would contain common configurations for the ETL module.

$ cat personConfig.json

{
"config": {
"log": "debug",
"fileDirectory": "/temp/databases/dbpedia_csv/",
"fileName": "Person.csv.gz"
3
3

$ cat commonConfig.json

"begin": [
{ "let": { "name": "$filePath", "value": "$fileDirectory.append($fileName)"} },
{ "let": { "name": "$className", "value": "$fileName.substring(0, $fileName.indexof("."))"} }

1

"source" : {
"file": { "path": "$filePath", "lock" : true }
iy
"extractor" : {
"row": {}
iy
"transformers" : [
{ "csv": { "separator": ",", "nullvalue": "NULL", "skipFrom": 1, "skipTo": 3 } }
{ "merge": { "joinFieldName":"URI", "lookup":"V.URI" } },
{ "vertex": { "class": "$className"} }
1,
"loader" : {
"orientdb": {
"dbURL": "plocal:/temp/databases/dbpedia",
"dbuUser": "admin",
"dbPassword": "admin",

"dbAutoCreate": true,

"tx": false,

"batchCommit": 1000,

"dbType": "graph",

"indexes": [{"class":"V", "fields":["URI:string"], "type":"UNIQUE" }]

Then, when you can call both configuration files when you run the ETL module:

$ S$ORIENTDB_HOME/bin/oetl.sh commonConfig.json personConfig.json

Run-time configuration

In the configuration file for the ETL module, you can define variables that the module resolves at run-time by passing them as command-
line options. Values passed in this manner override the values defined in the "config" section, even when you use multiple

configuration files.

For instance, you might set the configuration variable in the file to ${databaseurL} , then define it through the command-line using:

$ $ORIENTDB_HOME/bin/oetl.sh config-dbpedia.json \

-databaseURL=plocal:/tmp/mydb

In this case, the databaseURL parameter is set in the "config" sectionto /tmp/mydb , overriding any value given the file.

Configuration

"config": {
"log": "debug",
"fileDirectory": "/temp/databases/dbpedia_csv/",
"fileName": "Person.csv.gz"
"databaseUrl": "plocal:/temp/currentDb"
1y

238

ETL - Blocks

When OrientDB executes the ETL module, blocks in the ETL configuration define components to execute in the process. The ETL
module in OrientDB supports the following types of blocks:

e 'let"
® 'code"

® 'console"

Let Blocks

Ina "let" block, you can define variables to the ETL process context.

e Component name: let

Syntax
s, Defaul
Parameter Description Type Mandatory elault
value
"hame" Dgﬁnes the Varlaple name. The ETL process ignores any values string yes
with the $ prefix.
"value" Defines the fixed value to assign. an
C— Defines. an expression in the OrientDB SQL language to evaluate string
and assign.
Examples

e Assign a value to the file path variable

{
"let": {
"name": "$filePath",
"value": "/temp/myfile"
}
}

e Concat the $fileName variable to the $fileDirectory to create a new variable for $filepath :

{
"let": {
"name": "$filePath",
"expression": "$fileDirectory.append($fileName)"
}
3

Code Blocks

In the "code" block, you can configure code snippets to execute in any JVM-supported languages. The default language is JavaScript.

e Component name: code

Syntax
Parameter Description Type Mandatory Default value
"language" Defines the programming language to use. string Javascript

"code" Defines the code to execute. string yes

Examples

e Executea Hello, world! program in JavaScript, through the ETL module:

{
"code": {
"language": "Javascript",
"code": "print('Hello World!');"
}
}

Console Blocks

Ina "console" block, you can define commands OrientDB executes through the Console.

e Component name: console

Syntax
L. Default
Parameter Description Type Mandatory
value
nEilen Defines the path to a file containing the commands you want string
to execute.
"commands” Defines an array of commands, as strings, to execute in string
sequence. array
Example

e Invoke the console with a file containing the commands:

"console": {
"file": "/temp/commands.sqgl"

e Invoke the console with an array of commands:

"console": {
"commands": [
"CONNECT plocal:/temp/db/mydb admin admin",
"INSERT INTO Account set name = 'Luca'"

ETL - Sources

When OrientDB executes the ETL module, source components define the source of the data you want to extract. In the case of some
extractors like JDBCExtractor work without source, making this component optional. The ETL module in OrientDB supports the
following types of sources:

® '"input"
e "file"
® "http"

Input Sources

In the input source component, the ETL module extracts data from console input. You may find this useful in cases where the ETL
module operates in a pipe with other tools.

e Component name: input

Syntax
oetl.sh "<input>"
Example
e Cat afile, pipingits output into the ETL module:

$ cat /etc/csv | $ORIENTDB HOME/bin/oetl.sh \

"{transformers:[{csv:{}}]}"

If the source isn't configured, input is used by default. It would be easy to write a bash script that loads multiple files from a directory:

for £ in $(1s); do "processing $f"; cat $f > ORIENTDB_HOME/bin/oetl.sh ; done

File Sources

In the file source component, the variables represent a source file containing the data you want the ETL module to read. You can use text

files or files comprssed to tar.gz .

e Component name: file

Syntax
Parameter Description Type Mandatory Default value
"path" Defines the path to the file string yes
"lock" Defines whether to lock the file during the extraction phase. boolean false
"encoding” Defines the encoding for the file. string UTF-8
Examples

e Extract data from the file at /tmp/actor.tar.gz :

"file": {
"path": "/tmp/actor.tar.gz",
"lock" : .
"encoding" : "UTF-8"

}

HTTP Sources

In the HTTP source component, the ETL module extracts data from an HT TP address as source.

e Component name: http

Syntax
L Default
Parameter Description Type Mandatory
value
"url" Defines the URL to look to for source data. string yes
Defines the HTTP method to use in extracting data. Supported
"method" methods are: GET , POST , PUT , DELETE , HEAD , OPTIONS , string GET
and TRACE .
"headers" Defines the request headers as an inner document key/value. document
Examples

e Execute an HTTP request in a GET , setting the user agent in the header:

"http": {
"url": "http://ip.jsontest.com/",
"method": "GET",
"headers": {
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_9 4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0
.1985.125 Safari/537.36"

}

ETL - Extractors

When OrientDB executes the ETL module, extractor components handle data extraction from source. They are the first part of the ETL
process. The ETL module in OrientDB supports the following extractors:

e Row
o CSV
e JDBC

e JSON
e XML

Row Extractor

When the ETL module runs with a Row Extractor, it extracts content row by row. It outputs a string array class.

e Compnent name: row

e Output Class: [string]

Syntax
L Default
Parameter Description Type Mandatory
value
wpultiline" Defines whethgr thg process sup ports .rnultlhne. Useful with boolean P—
CSV's supporting linefeed inside of string.
"linefeed" Defines the linefeed to use in the event of multiline processing. string \ri\n

The "multiLine" and "linefeed" parameters were introduced in version 2.0.9.

Examples

e Use the row extractor with its default configuration:

"row": {}

CSV Extractor

When the ETL module runs the CSV Extractor, it parses a file formated to Apache Commons CSV and extracts the data into OrientDB.

This component was introduced in version 2.1.4 and is unavailable in older releases of OrientDB.

e Component name: csv

e OQOutput class: [obocument]

Syntax

https://commons.apache.org/proper/commons-csv

Default

Parameter Description Type Mandatory value
"separator" Defines the column separator. char ,
e TR L Defiqes whether the first line contains column boolean —
descriptors.
o — Defines array for names and (optionally) types to string
write. array
"nullvalue" Defines the null value in the file. string NULL
ndateFormat"]f?le:ines the format to use in parsing dates from string d;/vyy-MM_
"dateTimeFormat" g;f;nfiz Sl;eﬂf:rmat to use in parsing dates with string H\é\%%_MM_dd
"quote" Defines string character delimiter. char !
"'skipFrom" Defines the line number you want to skip from. integer
"skipTo" Defines the line number you want to skip to. integer
"ignoreEmptyLines" Defines whether it should ignore empty lines. boolean false
"ignoreMissingColumns" Defines whether it should ignore empty columns. boolean false
"predefinedFormat" Defines the CSV format you want to use. string

e Forthe "columns" parameter, specify the type by postfixing it to the value. Specifying types guarantees better performance.
e Forthe "predefinedFormat" parameter, the available formats are: pefault , Excel , MySQL , RFC4180 , TDF .
Examples

e Extract lines from CSV to the obocument class, using commas as the separator, considering nuLL as the null value and skipping

rows two through four:

{ "csv":

{ "separator": ",",
"nullvalue": "NULL",
"skipFrom": 1,
"skipTo":

e Extract lines from a CSV exported from My SQL:

{ "csv'":
{ '"predefinedFormat": "MySQL"}

e Extract lines from a CSV with the default formatting, using N/A as the null value and a custom date format:

{ "csv'":
{ '"predefinedFormat": "Default",
"nullvalue" : "N/A",
"dateFormat" : "dd-MM-yyyy",
"dateTimeFormat" : "dd-MM-yyyy HH:mm"

e Extract lines from a CSV with the default formatting, using n/A as the null value, a custom date format, a custom dateTime format

and columns type mapping:

{ "csv'":
{ '"predefinedFormat": "DEFAULT",

"nullvalue" : "N/A",
"dateFormat" : "dd-MM-yyyy",
"dateTimeFormat" : "dd-MM-yyyy HH:mm",

"columns": ["name:string", "createdAt:date", "updatedAt:dateTime"]

JDBC Extractor

When the ETL module runs the JDBC Extractor, it can access any database management system that supports the JDBC driver.

In order for the ETL component to connect to the source database, put the source database's JDBC driver in the classpath, or in the

$ORIENTDB_HOME/lib directory.

e Component name: jdbc

e Output class: [Obocument]

Syntax
Parameter Description Type Mandatory Dveaflz:llluelt
"driver" Defines the JDBC Driver class. string yes
"url" Defines the JDBC URL to connect to. string yes
"userName" Defines the username to use on the source database. string yes
"userPassword" Defines the user password to use on the source database. string yes
"query" Defines the query to extract the record you want to import. string yes
"queryCount” Defines query that returns the coun.t of the fetched records, string
(used to provide a correct progress indicator).
Example

e Extract the contents of the client table on the MySQL database test at localhost:

{ "jdbc": {
"driver": "com.mysqgl.jdbc.Driver",
"url": "jdbc:mysql://localhost/test",
"userName": "root",
"userPassword": "my_mysqgl passwd",
"query": "SELECT * FROM client"

JSON Extractor

When the ETL module runs with a JSON Extractor, it extracts data by parsing JSON objects. If the data has more than one JSON items,

you must enclose the in [] brackets.

o Component name: json

e Output class: [obocument]
Example

e Extract data from a JSON file.

{ "json": {} }

http://en.wikipedia.org/wiki/JDBC_driver

XML Extractor

When the ETL module runs with the XML extractor, it extracts data by parsing XML elements. This feature was introduced in version

2.2.

e Component name: xml

e Output class: [Obocument]

Syntax
Parameter Description
"rootNode" Defines the root node to extract in the XM L. By default, it

builds from the root element in the file.
Defines an array of elements, where child elements are

"tagsAsAttribute" considered as attributes of the document and the attribute
values as the text within the element.

Examples

e Extract data from an XML file, where the XML file reads as:

<?xml version="1.0" encoding="UTF-8"?>

<a>

<c name='Ferrari' color='red'>ignore</c>
<c name='Maserati' color='black'/>

While the OrientDB-ETL configuration file reads as:

{ "source":
{ "file":
{ "path": "src/test/resources/simple.xml" }
1y
"extractor" :
{ "xml": {3} 3},
"loader":
{ "test": {3} }
}

This extracts the data as:

{
"a"t {
b {
s [
{
"color": "red",
"name": "Ferrari"
3
{
"color": "black",
"name": "Maserati"
}
]
}
3
3

e Extract a collection from XML, where the XML file reads as:

Default

Type Mandatory value

string

string
array

Extractors

<?xml version="1.0" encoding="UTF-8"?>
<CATALOG>

<CD>

</CD
<CD>

</CD:
<CD>

</CD:

<TITLE>Empire Burlesque</TITLE>
<ARTIST>Bob Dylan</ARTIST>
<COUNTRY>USA</COUNTRY>
<COMPANY>Columbia</COMPANY>
<PRICE>10.90</PRICE>
<YEAR>1985</YEAR>

>

<TITLE>Hide your heart</TITLE>
<ARTIST>Bonnie Tyler</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>CBS Records</COMPANY>
<PRICE>9.90</PRICE>
<YEAR>1988</YEAR>

>

<TITLE>Greatest Hits</TITLE>
<ARTIST>Dolly Parton</ARTIST>
<COUNTRY>USA</COUNTRY>
<COMPANY>RCA</COMPANY>
<PRICE>9.90</PRICE>
<YEAR>1982</YEAR>

>

</CATALOG>

While the OrientDB-ETL configuration file reads:

{ "source":
{ "file":

}

{ "path": "src/test/resources/music.xml" }

ey
(%

{

}
}

"loa

tractor"
ml":
"rootNode": "CATALOG.CD",

"tagsAsAttribute": ["CATALOG.CD"]

der": { "test": {} }

This extracts the data as:

"TITLE": "Empire Burlesque",
"ARTIST": "Bob Dylan",
"COUNTRY": "USA",

""COMPANY": "Columbia",
"PRICE": "10.90",

"YEAR": "1985"

"TITLE": "Hide your heart",
"ARTIST": "Bonnie Tyler",
"COUNTRY": "UK",

"COMPANY": "CBS Records",
"PRICE": "9.90",

"YEAR": "1988"

"TITLE": "Greatest Hits",
"ARTIST": "Dolly Parton",
"COUNTRY": "USA",
"COMPANY": "RCA",
"PRICE": "9.90",

"YEAR": "1982"

247

ETL Transformers

When OrientDB runs the ETL module, transformer components execute in a pipeline to modify the data before it gets loaded into the

OrientDB database. The operate on received input and return output.

Before execution, it always initalizes the $input variable, so that if you need to you can access it at run-time.

e CSV

e FIELD

e MERGE
e VERTEX
e CODE

e LINK

e EDGE

e FLOW

o LOG

e BLOCK
e COMMAND

CSV Transformer

Beginning with version 2.1.4, the CSV Transformer has been deprecated in favor of the CSV Extractor.

Converts a string in a Document, parsing it as CSV

Component description.

e Component name: csv

e Supported inputs types: [String]

e Output: ODocument

Syntax

Parameter

"separator"

"columnsOnFirstLine"

"columns"

"nullvalue"
"stringCharacter"
"skipFrom"

"skipTo"

Description

Defines the column separator.

Defines whether the first line contains column
descriptions.

Defines array containing column names, you can define
types by postfixing the names with :<type> .

Defines the value to interpret as null.
Defines string character delimiter.
Defines the line number to skip from.

Defines the line number to skip to.

For the "columns" parameter, specifyingtype guarantees better performance.

Example

Type

char

boolean

string
array

string
char
integer

integer

Mandatory

yes

yes

Default
value

true

e Transform arow in CSV (as obocument class), using commas as the separator, considering nuLL as a null value and skipping

rows two through four.

{ "csv": { "separator": ",", "nullvalue": "NULL",

"skipFrom":

, "skipTo": 13

Field Transformer

When the ETL module calls the Field Transformer, it executes an SQL transformer against the field.

Component description.

° Comp onent name: vertex

e Supported inputs types: [ODocument]

e Output: ODocument

Syntax

Parameter
"fieldName"

"expression"

"value"

"operation"

"save"

Description

Defines the document field name to use.

Defines the expression you want to evaluate, using Orient DB
SQL.

Defines the value to set. If the value is taken or computed at run-
time, use "expression" instead.

Defines the operation to execute against the fields: set or
REMOVE .

Defines whether to save the vertex, edge or document right after
setting the fields.

The "fieldName" parameter was introduced in version 2.1.

Examples

e Transform the field class intothe obocument class, by prefixing it with _ :

{ "field":

{ "fieldName": "@class",
"expression": "class.prefix('_')"

e Apply the class name, based on the value of another field:

{ "field":

{ "fieldName": "@class",

"expression": "if((fileCount >= 0), 'D', 'F')"

e Assign the last part of a path to the name field:

{ "field":

{ "fieldName": "name",

"expression": "path.substring(eval('$current.path.lastIndexOf(\"/\") + 1'))"

e Asign the field a fixed value:

{ "field":

{ "fieldName": "counter",

"value":

o Rename the field from salary to renumeration :

Type
string

string

any

string

boolean

Mandatory

yes

Default
value

SET

false

{ "field":

{ "fieldName": "remuneration",
"expression": "salary"
}
H
{ "field":
{ "fieldName": "salary",
"operation": "remove"
}
3

e Rename multiple fields in one call.

{ "field":
{ "fieldNames":
["remuneration", "salary"],
"operation": "remove"
}
}

This feature was introduced in version 2.1.

Merge Transformer

When the ETL module calls the M erge Transformer, it takes input from one obocument instance to output into another, loaded by
lookup. THe lookup can either be a lookup against an indexor a SeLECT query.

Component description.

e Component name: merge
e Supported inputs types: [ODocument, OrientVertex]
e Output: ODocument

Syntax
o Default
Parameter Description Type Mandatory
value
"joinFieldName" Defines the field containing the join value. string yes
m o Defines the index on which to execute th elookup, or a .
Llookup P string yes
SELECT query.
nunresolvedLinkAction" Defines the action to execute in the event that the join string e —

hasn't been resolved.

For the "unresolvedLinkAction" parameter, the supported actions are:

Action Description
NOTHING Tells the transformer to do nothing,
WARNING Tells the transformer to increment warnings.
ERROR Tells the transformer to increment errors.
HALT Tells the transformer to interrupt the process.
SKIP Tells the transformer to skip the current row.

Example

e Merge the current record against the record returned by the lookup on index v.ur1 , with the value contained in the field urr of

the input document:

{ "merge":
{ "joinFieldName": "URI",
"lookup":"V.URI"
}
}

Vertex Transformer

When the ETL module runs the Vertex Transformer, it transforms obocument input to output OrientVertex .

Component description.

e Component name: vertex
e Supported inputs types: [ODocument, OrientVertex]
e Output: OrientVertex

Syntax
Parameter Description
"class" Defines the vertex class to use.
nskipbuplicates"” Defines whether it skips duplicates. When class has a

UNIQUE constraint, ETL ignores duplicates.

The "skippuplicates" parameter was introduced in version 2.1.

Example

Type Mandatory

string

boolean

e Transform obocument input into a vertex, setting the class value to the $classname variable:

{ "vertex":
{ "class": "$className",
"skipDuplicates":
}
}

Edge Transformer

Default
value

\"

false

When the ETL modules calls the Edge Transformer, it converts join values in one or more edges between the current vertex and all

vertices returned by the lookup. The lookup can either be made against an index ora SELECT .

Component description.

o Component name: EDGE
e Supported inputs types: [ODocument, OrientVertex]
e OQOutput: OrientVertex

Syntax

Default

Parameter Description e Mandato
P Typ vy value
"joinFieldName" Defines the field containing the join value. string yes
"direction" Defines the edge direction. string out
"class" Defines the edge class. string E
" " Defines the index on which X¢ he look r .
SR efines the index on which to execute the lookup o it -
a SELECT .
"targetVertexFields" Defines the field on which to set the target vertex. object
"edgeFields" Defines the fields to set in th eedge. object
Defines whether to skip duplicate edges when the
"skipbuplicates" UNIQUE constraint is set on both the out and in boolean false
properties.
wunresolvedLinkAction” Defines the action to execute in the event that the siirg NOTHING

join hasn't been resolved.

The "targetvertexFields" andx "edgeFields" parameter were introduced in version 2.1.

For the "unresolvedLinkAction" parameter, the following actions are supported:

Action Description
NOTHING Tells the transformer to do nothing.
CREATE Tells the transformer to create an instance of orientvertex , setting the primary key to the join value.
WARNING Tells the transformer to increment warnings.
ERROR Tells the transformer to increment errors.
HALT Tells the transformer to interrupt the process.
SKIP Tells the transformer to skup the current row.
Examples

e Create an edge from the current vertex, with the class set to Parent , to all vertices returned by the lookup on the D.inode index

with the value contained in the filed inode_parent of the input's vertex:

{ "edge":
{ "class": "Parent",
"joinFieldName": "inode_parent",

"lookup":"D.inode",
"unresolvedLinkAction": "CREATE"

e Transformer a single-line CSV that contains both vertices and edges:

{ "source":
{ "content":
{ "value": "id, name, surname, friendSince, friendId, friendName, friendSurname\no, Jay, Miner, 1996, 1, Luca, Garulli"
}
H
"extractor":
{ "row": {} },
"transformers":
[
{ "esv': {3},
{ "vertex":
{ "class": "vi" }
}
{ "edge":

{ "unresolvedLinkAction": "CREATE",
"class": "Friend",
"joinFieldName": "friendId",
"lookup": "v2.fid",
"targetVertexFields":

{ "name": "${input.friendName}",
"surname": "${input.friendSurname}"
}
"edgeFields":
{ "since": "${input.friendSince}" }
}
}
{ "field":
{ "fieldNames":
["friendSince",
"friendId",
"friendName",
"friendSurname"
1

"operation": "remove"

}
1,
"loader":
{ "orientdb":
{ "dbURL": "memory:ETLBaseTest",
"dbType": "graph",
"useLightweightEdges": false

Flow Transformer

When the ETL module calls the Flow Transformer, it modifies the flow through the pipeline. Supported operations are skip and
halt . Typically, this transformer operates with the if attribute.

Component description.

e Component name: flow
e Supported inputs types: Any

e QOutput: same type as input

Syntax
Parameter Description Type Mandatory Default value
"operation” Defines the flow operation: skip or halt . string yes
Example

e Skip the current record if name is null:

{ "flow":
{ "if": "pame is null",
"operation" : "skip"
}
}

Code Transformer

When the ETL module calls the Code Transformer, it executes a snippet of code in any JVM supported language. The default is

JavaScript. The last object in the code is returned as output.
In the execution context:

e input The input object received.

e record The record extracted from the input object, when possible. In the event that input object is a vertex or edge, it assigns the

underlying opbocument to the variable.
Component description.

e Component name: code
e Supported inputs types: [Object]
e Output: Object

Syntax
Parameter Description Type
"language" Defines the programming language to use. string
"code" Defines the code to execute. string
Example

e Display the current record and return the parent:

{ "code":
{ "language": "Javascript",
"code": "print('Current record: ' + record); record.field('parent');"
}
}

Link Transformer

Mandatory Default value
JavaScript

yes

When the ETL module calls the Link Transformer, it converts join values into links within the current record, using the result of the

lookup. The lookup can be made against an index or a SELECT .
Component description.

e Component name: link
e Supported inputs types: [ODocument, OrientVertex]
e Output: ODocument

Syntax

Default

Parameter Description Type Mandatory value
"joinFieldName" Defines the field containing hte join value. string
"joinvalue" Defines the value to look up. string
"1linkFieldName" Defines the field containing the link to set. string yes
"linkFieldType" Defines the link type. string yes
"lookup® Defines the index on which to execute the lookup or a string yes

SELECT query.

wunresolvedLinkAction” Defines the action to execute in the event that the join sirtieg ORI

doesn't resolve.

For the "linkFieldType" parameter, supported link types are: LINK , LINKSET and LINKLIST .

For the "unresolvedLinkAction" parameter the following actions are supported:

Action Description
NOTHING Tells the transformer to do nothing.
CREATE Tells the transformer to create an obocument instance, setting the primary key as the join value.
WARNING Tells the transformer to increment warnings.
ERROR Tells the transformer to increment errors.
HALT Tells the transformer to interrupt the process.
SKIP Tells the transformer to skip the current row.
Example

e Transform a JSON value into a link within the current record, set as parent of thetype LINk , with the result of the lookup on

the index D.node with the value contained in the field inode_parent on the input document.

{ "link":

{ "linkFieldName": "parent",
"linkFieldType": "LINK",
"joinFieldName": "inode_parent",
"lookup":"D.inode",
"unresolvedLinkAction":"CREATE"

Log Transformer

When the ETL module uses the Log Transformer, it logs the input object to system.out .
Component description.

e Component name: log

e Supported inputs types: Any

e OQOutput: Any
Syntax
Parameter Description Type Mandatory Default value
"prefix" Defines what it writes before the content. string
"postfix" Defines what it writes after the content. string
Examples

e Logthe current value:

{ "log": {} }

e Logthe currnt value with -> as the prefix:

{ "log":
{ "prefix" : "o> "}
}

Block Transformer

When the ETL module calls the Block Transformer, it executes an ETL Block component as a transformation step.

Component description.

e Component name: block

e Supported inputs types: [Any]

e Output: Any
Syntax
Parameter Description
"block" Defines the block to execute. document
Example

e Logthe current value:

{ "block":
{ "let":
{ "name": "id",
"value": "={eval('$input.amount * 2')3}"
3
3
3

Command Transformer

When the ETL module calls the Command Transformer, it executes the given command.

Component description.

e Component name: command
e Supported inputs types: [ODocument]
e Output: ODocument

Syntax
Parameter Description
"language" Defines the command language: SQL or Gremlin.
"command" Defines the command to execute.

Example

e FExecutea seLecT and output an edge:

{ "command" :
{ "command" : "SELECT FROM E WHERE id = ${input.edgeid}",
"output" : "edge"
3

}

Mandatory
yes
Type Mandatory
string
string yes

Default value

Default value

sql

Transformers

257

ETL - Loaders

When the ETL module executes, Loaders handle the saving of records. They run at the last stage of the process. The ETL module in
OrientDB supports the following loaders:

e Output
e OrientDB

Output Loader
When the ETL module runs the Output Loader, it prints the transformer results to the console output. This is the loader that runs by
default.

e Component name: output

e Accepted input classes: [Object]

OrientDB Loader

When the ETL module runs the OrientDB Loader, it loads the records and vertices from the transformers into the OrientDB database.

e Component name: orientdb

e Accepted input classes: [Obocument, OrientVertex]

Syntax

Parameter

"dbURL"

"dbuser"

"dbPassword"

"serverUser"

"serverPassword"

"dbAutoCreate"

"dbAutoCreateProperties"

"dbAutoDropIfExists"

ngyh

"txUselLog"

yal'

"batchCommit"

"dbType"

"class"

"cluster"

"classes"

"indexes"

"useLightweightEdges"

"standardELementConstraints"

Forthe "txuseLog" parameter, when WAL is disabled you can still achieve reliable transactions through this parameter. You may find it

Description

Defines the database URL.
Defines the user name.
Defines the user password.

Defines the server administrator user name,
usuaﬂy root

Defines the server administrator user
password that is provided at server startup

Defines whether it automatically creates the
database, in the event that it doesn't exist
already.

Defnes whether it automatically creates
properties in the schema.

Defines whether it automatically drops the
database if it exists already.

Defines whether it uses transactions
Defines whether it uses log in transactions.

Defines whether it uses write ahead logging.
Disable to achieve better performance.

When using transactions, defines the batch
of entries it commits. Helps avoid having
one large transaction in memory.

Defines the database type: graph or
document

Defines the class to use in storing new
record.

Defines the cluster in which to store the
new record.

Defines whether it creates classes, if not
defined already in the database.

Defines indexes to use on the ETL process.

Before starting, it creates any declared

indexes not present in the database. Indexes

must have "type" , "class" and
"fields" .

Defines whether it changes the default
setting for Lightweight Edges.

Defines whether it changes the default
setting for TinkerPop BLueprint
constraints. Value cannot be null and you
cannot use id as a property name.

Type Mandatory

string yes
string

string

string

string

boolean

boolean

boolean

boolean

boolean

boolean

integer

string

string

string
inner

document

inner
document

boolean

boolean

Default
value

admin

admin

true

false

false

false

true

document

false

true

useful to group many operations into a batch, such as CREATE EDGE . If "dbAutoCreate" or "dbAutoDropIfExists" are set to true and

remote connection is used, serverusername and serverPassword must be provided. Usually the server administrator user name is

root and the password is provided at the startup of the OrientDB server.

Classes

When using the "classes" parameter, it defines an inner document that contains additional configuration variables.

Parameter Description Type Mandatory Default value

"name" Defines the class name. string yes
"extends" Defines the super-class name. string
"clusters" Defines the number of cluster to create under the class. integer e

NOTE: The "clusters" parameter was introduced in version 2.1.

Indexes
L. Default
Parameter Description Type Mandatory
value
"name" Defines the index name. string
"class" Defines the class name in which to create the index. string yes
"type" Defines the index type. string yes
wEields" Defines an ‘_alrray of fields to index. To specify the field type, use the siin -
syntax: <field>.<type> .
"metadata” Defines additional index metadata. string
Examples

Configuration to load data into the database dbpedia on OrientDB, in the directory /temp/databases usingthe PLocal protocol and a
Graph database. The load is transactional, performing commits in thousand insert batches. It creates two lookup vertices with indexes

against the property string URI in the base vertex class v . The index is unique.

"orientdb": {
"dbURL": "plocal:/temp/databases/dbpedia",
"dbUser": "importer",
"dbPassword": "IMP",
"dbAutoCreate": 0
"ex': 0
"batchCommit": 7
"wal" : 7

"dbType": "graph",
"classes": [
{"name":"Person", "extends": "V" },
{"name":"Customer", "extends": "Person", "clusters":8 }
1
"indexes": [
{"class":"Vv", "fields":["URI:string"], "type":"UNIQUE" },
{"class":"Person", "fields":["town:string"], "type":"NOTUNIQUE"

metadata : { "ignoreNullvalues" : 3

Tutorial: Importing the Open Beer Database into OrientDB

In this tutorial we will use the OrientDB's ETL module to import, as a graph, the Open Beer Database.

Note: You can access directly the converted database, result of this ETL tutorial, in the following ways:

e Studio: in the login page press the "Cloud" button, put server's credential and press the download button from the "OpenBeer"

row;

e Direct Download: download the database from http://orientdb.com/public-databases/OpenBeer.zip and unzip it in a OpenBeer

folder inside OrientDB's server "databases" directory.

The Open Beer Database

The Open Beer Database can be downloaded in CSV format from https://openbeerdb.com/. The following image shows its relational

model:
Beer Categories
“iiel -
°cat name —— Breweries
®last mod °ig le|
o
“brewery id Ozzgiessl
“name R
°cat_id 0aclidress2
Beer Styles °style id Sk
4 o3
e °ab state
e av “code
e Ll “bp *country
“style name ®srm S hone
“last mod ‘upc Cha e
°filepath e |
o “filepath
“descript
0 - °descript
last mod °last mod

Preliminary Steps
First, please create a new folder somewhere in your hard drive, and move into it. For this test we will assume /temp/openbeer :

$ mkdir /temp/openbeer
$ cd /temp/openbeer

https://openbeerdb.com/
http://orientdb.com/public-databases/OpenBeer.zip
https://openbeerdb.com/

Download the Open Beer Database in CSV format

Download the Open Beer Database in CSV format and extract the archive:

$ curl http://openbeerdb.com/files/openbeerdb_csv.zip > openbeerdb_csv.zip
$ unzip openbeerdb_csv.zip
The archive consists of the following files:

e beers.csv: contains the beer records

® breweries.csv: contains the breweries records

e breweries_geocode.csv : contains the geocodes of the breweries. This file is not used in this Tutorial
e categories.csv : contains the beer categories

e styles.csv : contains the beer styles
Install OrientDB

Download and install OrientDB:

$ wget https://s3.us-east-2.amazonaws.com/orientdb3/releases/2.2.37/orientdb-community-2.2.37.zip -0 orientdb-community-2.2.37
.zip
$ unzip orientdb-community-2.2.37

For more information on how to install OrientDB, please refer to the Installation section.

Graph Data Model

Before starting the ETL process it's important to understand how the Open Beer Database can be modeled as a graph.

The relational model of the Open Beer Database can be easily converted to a graph model, as shown below:

Category

The model above consists of the following nodes (or vertices) and relationships (or edges):

o Nodes: Beer, Category, Style, Brewery;
e Relationships: HasCategory, HasStyle, HasBrewery.

For more informations on the Graph M odel in OrientDB, please refer to the Graph M odel section.

ETL Process

The ETL module for OrientDB provides support for moving data to and from OrientDB databases using Extract, Transform and Load

processes.
The ETL module consists of a script, oetl.sh , that takes in input a single JSON configuration file.

For more information on the ETL module, please refer to the ETL section.

Import Beer Categories
The following are the first two lines of the categories.csv file:

"id", "cat_name", "last_mod"
"1","British Ale","2010-10-24 13:50:10"

In order to import this file in OrientDB, we have to create the following file as categories.json :

"source": { "file": { "path": "/temp/openbeer/openbeerdb_csv/categories.csv" } },
"extractor": { "csv": {} },
"transformers": [
{ "vertex": { "class": "Category" } }
1,
"loader": {
"orientdb": {
"dbURL": "plocal:../databases/openbeerdb",
"dbType": "graph",
"classes": [
{"name": "Category", "extends": "V"}
1, "indexes": [
{"class":"Category", "fields":["id:integer"], "type":"UNIQUE" }

To import it into OrientDB, please move into the "bin" directory of the OrientDB distribution:

$ cd orientdb-community-2.2.8/bin

and run OrientDB ETL:

$./oetl.sh /temp/openbeer/categories.json
OrientDB etl v.2.0.9 (build @BUILD@) www.orientechnologies.com
BEGIN ETL PROCESSOR

END ETL PROCESSOR
+ extracted 12 rows (0 rows/sec) - 12 rows -> loaded 11 vertices (0 vertices/sec) Total time: 77ms [0 warnings, O errors]

Import Beer Styles
Now let's import the Beer Styles. These are the first two lines of the styles.csv file:

"id", "cat_id", "style_name", "last_mod"
","Classic English-Style Pale Ale",'"2010-10-24 13:53:31"

In this case we will correlate the Style with the Category created earlier.

This is the styles.json to use with OrientDB ETL for the next step:

"source": { "file": { "path": "/temp/openbeer/openbeerdb_csv/styles.csv" } },
"extractor": { "csv": {3} },
"transformers": [
{ "vertex": { "class": "Style" } },
{ "edge": { "class": "HasCategory", "joinFieldName": "cat_id", "lookup": "Category.id" } }
1,
"loader": {
"orientdb": {
"dbURL": "plocal:../databases/openbeerdb",
"dbType": "graph",
"classes": [
{"name": "Style", "extends": "V"},
{"name": "HasCategory", "extends": "E"}
1, "indexes": [
{"class":"Style", "fields":["id:integer"], "type":"UNIQUE" }

Now, to import the styles, please execute the following command:

$./oetl.sh /temp/openbeer/styles.json
OrientDB etl v.2.0.9 (build @BUILD@) www.orientechnologies.com
BEGIN ETL PROCESSOR

END ETL PROCESSOR
+ extracted 142 rows (0 rows/sec) - 142 rows -> loaded 141 vertices (0 vertices/sec) Total time: 498ms [0 warnings, © errors]

Import Breweries

Now it's time for the Breweries. These are the first two lines of the breweries.csv file:

"id", "name", "address1", "address2", "city", "state", "code", "country", "phone", "website", "filepath", "descript", "last_mod"
"1","(512) Brewing Company","407 Radam, F200",,"Austin","Texas","78745","United States",'"512.707.2337","http://512brewing.com/
",,"(512) Brewing Company is a microbrewery located in the heart of Austin that brews for the community using as many local, d
omestic and organic ingredients as possible.","2010-07-22 20:00:20"

Breweries have no outgoing relations with other entities, so this is a plain import similar to the one we did for the categories.

This is the breweries.json to use with OrientDB ETL for the next step:

{
"source": { "file": { "path": "/temp/openbeer/openbeerdb_csv/breweries.csv" } },
"extractor": { "csv": {} },
"transformers": [
{ "vertex": { "class": "Brewery" } }
1,
"loader": {
"orientdb": {
"dbURL": "plocal:../databases/openbeerdb",
"dbType": "graph",
"classes": [
{"name": "Brewery", "extends": "V"}
1, "indexes": [
{"class":"Brewery", "fields":["id:integer"], "type":"UNIQUE" }
]
3
3
3

Run the import for breweries:

$./oetl.sh /temp/openbeer/breweries.json

OrientDB etl v.2.0.9 (build @BUILD@) www.orientechnologies.com
BEGIN ETL PROCESSOR
END ETL PROCESSOR

+ extracted 1.395 rows (0 rows/sec) - 1.395 rows -> loaded 1.394 vertices (0 vertices/sec) Total time: 830ms [0 warnings, O er
rors]

Import Beers

Now it's time for the last and most important file: the Beers! These are the first two lines of the beers.csv file:

"id", "brewery_id", "name", "cat_id", "style id", "abv","ibu","srm", "upc", "filepath", "descript","last_mod",,,,, ;s rrrirrirrrirrirs
I
R
R

FEN I E I T I I T LTI E T L LI E L LI E LI L L L LT L L E L L L I E L L L L L E L L L L L r L I L rrEr i I rrr i i i i i i i i i i rrrrrrrrrrs

2z
"1","812", "Hocus Pocus","11","116","4.5","@","@","0",,"Our take on a classic summer ale. A toast to weeds, rays, and summer h
aze. A light, crisp ale for mowing lawns, hitting lazy fly balls, and communing with nature, Hocus Pocus is offered up as a s

ummer sacrifice to clodless days.
As you can see each beer is connected to other entities through the following fields:

® brewery_id -> Brewery
e cat_id -> Category
e style id -> Style

This is the beers.json to use with OrientDB ETL for the next step:

{

"config" : { "haltOnError": 3,

"source": { "file": { "path": "/temp/openbeer/openbeerdb_csv/beers.csv" } },

"extractor": { "csv": { "columns": ["id","brewery_id", "name","cat_id","style_id", "abv","ibu","srm", "upc", "filepath", "descrip
t","last_mod"],

"columnsOnFirstLine": 3}
"transformers": [
{ "vertex": { "class": "Beer" } },

{ "edge": { "class": "HasCategory", "joinFieldName": "cat_id", "lookup": "Category.id" } },
{ "edge": { "class": "HasBrewery", "joinFieldName": "brewery_id", "lookup": "Brewery.id" } },
{ "edge": { "class": "HasStyle", "joinFieldName": "style_id", "lookup": "Style.id" } }

1
"loader": {
"orientdb": {
"dbURL": "plocal:../databases/openbeerdb",
"dbType": "graph",
"classes": [
{"name": "Beer", "extends": "V"},
{"name": "HasCategory", "extends": "E"},
{"name": "HasStyle", "extends": "E"},
{"name": "HasBrewery", "extends": "E"}
], "indexes": [
{"class":"Beer", "fields":["id:integer"], "type":"UNIQUE" }
1
}
}

Run the final import for beers:

$./oetl.sh /temp/openbeer/beers.json

OrientDB etl v.2.0.9 (build @BUILD@) www.orientechnologies.com
BEGIN ETL PROCESSOR

+ extracted 5.862 rows (1.041 rows/sec) - 5.862 rows -> loaded 4.332 vertices (929 vertices/sec) Total time: 10801ms [0 warnin
gs, 27 errors]
END ETL PROCESSOR

Note: the 27 errors are due to the 27 wrong content lines that have no id.

Some Queries and Visualizations

Now that the database has been imported we can execute some queries and create some visualizations.

The following are some ways we can use to access the newly imported openBeer database:

Console

Gremlin Console

Studio

APIs & Drivers

some external tools, like Gephy

some external visualization libraries for graph rendering

If we want to query all Category vertices we can execute the following query:

SELECT * FROM Category

The following is the visualization we can create using the Studio's Graph Editor:

[*=

Graph Editor N_E © X & MORE~

1 SELECT * FROM Catepory

Run: Cirl + Return | Undo: Cirl/Cmd + Z | Redo: Ctrl/Cmd + Shift + Z
Search : Ctrl/Cmd + F | Toggle Comment: Cirl/Cmd +/ | Autocomplete: Ctrl + Space

. Category

#11:3
#11:5

#1117
#11:10
#11:2

#11:8 #11:9
#11:4
#11:6
#1110

#1:1

If we want to find all nodes directly connected to a specific beer (e.g. the beer Petrus Dubbel Bruin Ale) with either an incoming or

outgoing relationship, we can use a query like the following:

SELECT EXPAND(BOTH()) FROM Beer WHERE name = 'Petrus Dubbel Bruin Ale'

If we execute this query in the Browse tab of Studio we get the following result, from where we can see that there are three nodes
connected to this beer, having @rid 11:4, 14:262 and 12:59:

Tutorial: Importing the Open Beer Database into OrientDB

® BROWSE E SCHEMA & SECURITY OGRAPH <> FUNCTIONS D & OPENBEER () ~

1 SELECT EXPAND(BOTH()) FROM Beer WHERE name = 'Petrus Dubbel Bruin Ale’ -
Run: Cirl + Return | Undo: Ctri/Cmd + Z | Redo: CtrliCmd + Shift + Z
Search : Cirl/Cmd + F | Toggle Comment: Cirl/Cmd +/ | Autocomplete: Cirl + Space @ m m Ceii
| CoMBAND |
SELECT EXPAND(BOTH()) FROM Beer WHERE name = 'Petrus Dubbel Bruin Ale' [e} 47
METADATA ‘ PROPERTIES IN ‘ out
@rid @class @version id style_name cat_name last_mod cat_id name address1 city state country phone HasStyle HasBrewery HasCategory HasCategory
#11:4 41 5 Belgian 2010-06- #1358 | #1359]
and 08 | #1360 | #1361]
French 00:00:00 CEREE
Ale
#14:262 17 266 2010-07- Brouwerij Rijksweg Bavikhove West- Belgium 0036-
22 Bavik - De 33 Viaanderen 10-10
00:00:00 Brabandere 00:00:00 CEDCED
[tdoretio) |
#1250 |0 42 60 Belgian- 2010-06- 5 [o16.45 | #16:127 | =3
Style 15 CEDCEEA
Dubbel 00:00:00 [ric6e0 | 5160710 |

Query executed in 1.095 sec. Returned 3 record(s). Limit: 20 (CHANGE IT) Raw

The same result can be visualized using an external graph library. For instance, the following graph has been obtained using the library

vis.js where the input visjs dataset has been created with a java program created using the OrientDB's Java Graph API:

Belgian-Style Dubbel

We can also query bigger portions of the graph. For example, the following image shows all beer Category nodes and for each of them all
the connected Style nodes (the visualization has been created using the library vis.js):

267

http://visjs.org
http://visjs.org

Tutorial: Importing the Open Beer Database into OrientDB

268

Import from a CSV file to a Graph

This example describes the process for importing from a CSV file into OrientDB as a Graph. For the sake of simplicity, consider only

these 2 entities:

e POST
e COMMENT

Also consider the relationship between Post and Comment as One-2-M any. One Post can have multiple Comments. We're representing

them as they would appear in an RDBMSS, but the source could be anything.

With an RDBM S Post and Comment would be stored in 2 separate tables:

TABLE POST:

dboooodboooooooooooooooo +
| id | title |
Doocofroccooocosoooocos +

| 10 | NoSQL movement |
| 20 | New OrientDB |
R CET T +

TABLE COMMENT:

s O oo +
| id | postId | text

R CEEEEE oo +
| @ 10 | First

| 12| 10 | Second

| 22 | 10 | Another

| 410 | 20 | First again

| 82 | 20 | Second Again |
s CEETEE Fommmee +

With an RDBMSS, one-2-many references are inverted from the target table (Comment) to the source one (Post). This is due to the

inability of an RDBMSS to handle a collection of values.

In comparison, using the OrientDB Graph model, relationships are modeled as you would think, when you design an application:
POSTs have edges to COMMENTS.

So, with an RDBM S you have:

Table POST <- (foreign key) Table COMMENT

With OrientDB, the Graph model uses Edges to manage relationships:

Class POST ->* (collection of edges) Class COMMENT

(1) Export to CSV

If you're using an RDBMSS or any other source, export your data in CSV format. The ETL module is also able to extract from JSON and
an RDBM S directly through JDBC drivers. However, for the sake of simplicity, in this example we're going to use CSV as the source

format.

Consider having 2 CSV files:

File posts.csv

posts.csv file, containing all the posts

id, title
10, NoSQL movement
20,New OrientDB

File comments.csv

comments.csv file, containing all the comments, with the relationship to the commented post

id, postId, text
0,10, First

1,10, Second

21,10, Another
41,20,First again
82,20,Second Again

(2) ETL Configuration

The OrientDB ETL tool requires only a JSON file to define the ETL process as Extractor, a list of Transformers to be executed in the
pipeline, and a Loader, to load graph elements into the OrientDB database.

Below are 2 files containing the ETL to import Posts and Comments separately.

post.json ETL file

"source": { "file": { "path": "/temp/datasets/posts.csv" } },
"extractor": { "csv": {} },
"transformers": [
{ "vertex": { "class": "Post" } }
1
"loader": {
"orientdb": {
"dbURL": "plocal:/temp/databases/blog",
"dbType": "graph",
"classes": [

{"name": "Post", "extends": "V"},
{"name": "Comment", "extends": "V"},
{"name": "HasComments", "extends": "E"}

1, "indexes": [
{"class":"Post", "fields":["id:integer"], "type":"UNIQUE" }
]

The Loader contains all the information to connect to an OrientDB database. We have used a plocal database, because it's faster.
However, if you have an OrientDB server up & running, use "remote:" instead. Note the classes and indexes declared in the Loader. As
soon as the Loader is configured, the classes and indexes are created, if they do not already exist. We have created the index on the

Post.id field to assure that there are no duplicates and that the lookup on the created edges (see below) will be fast enough.

comments.json ETL file

"source": { "file": { "path": "/temp/datasets/comments.csv" } },
"extractor": { "csv": {} },
"transformers": [
{ "vertex": { "class": "Comment" } },
{ "edge": { "class": "HasComments",
"joinFieldName": "postId",
"lookup": "Post.id",

"direction": "in"
}
}
1,
"loader": {
"orientdb": {

"dbURL": "plocal:/temp/databases/blog",
"dbType": "graph",
"classes": [
{"name": "Post", "extends": "V"},
{"name": "Comment", "extends": "V"},
{"name": "HasComments", "extends": "E"}
], "indexes": [
{"class":"Post", "fields":["id:integer"], "type":"UNIQUE" }

This file is similar to the previous one, but the Edge transformer does the job. Since the link found in the CSV goes in the opposite

direction (Comment->Post), while we want to model directly (Post->Comment), we used the direction "in" (default is always "out").

(3) Run the ETL process

Now allow the ETL to run by executing both imports in sequence. Open a shell under the OrientDB home directory, and execute the
following steps:

$ cd bin
$./oetl.sh post.json
$./oetl.sh comment.json

Once both scripts execute successfully, you'll have your Blog imported into OrientDB as a Graph!

(4) Check the database

Open the database under the OrientDB console and execute the following commands to check that the import is ok:

$./console.sh

OrientDB console v.2.0-SNAPSHOT (build 2565) www.orientechnologies.com
Type 'help' to display all the supported commands.

Installing extensions for GREMLIN language v.2.6.0

orientdb> connect plocal:/temp/databases/blog admin admin

Connecting to database [plocal:/temp/databases/blog] with user 'admin'...OK

orientdb {db=blog}> select expand(out()) from Post where id = 10

sooodhooooo fooooooo oooodboooooo droccoooo drocoooooonooooo
|@RID |@CLASS |id |postId|text | in_HasComments
sooodhooooo Pooooooo Poooodboooooo droccoooo droococooooonooooo
[c] |#12:0|Comment | @ |10 |First |[size=1]
1 |#12:1|Comment |1 |10 |Second |[size=1]
2 |#12:2|Comment |21 |10 |Another | [size=1]
cooodhooooo fooooooo doooodboooooo droccoooo drococooooooooooo

3 item(s) found. Query executed in 0.002 sec(s).
orientdb {db=blog}> select expand(out()) from Post where id = 20

s e e R T R L E R R EEEEE
|@RID |@CLASS |id |postId|text | in_HasComments
s e e R T R L E R R EEEEE
0 |#12:3|Comment|41 |20 |First again |[size=1]
1 |#12:4|Comment|82 |20 |Second Again|[size=1]
s e Hommmmen oo R L B L EEEEE

2 item(s) found. Query executed in 0.001 sec(s).

Import a tree structure

If you have a tree structure in an RDBM S or CSV file and you want to import it in OrientDB, the ETL can come to your rescue. In this

example, we use CSV for the sake of simplicity, but it's the same with JDBC input and a SQL query against an RDBMSS.

source.csv

ID, PARENT_ID, LAST_YEAR_INCOME, DATE_OF_BIRTH, STATE
0, -1,10000,1990-08-11, Arizona
1,0,12234,1976-11-07, Missouri
2,0,21322,1978-01-01, Minnesota
3,0,33333,1960-05-05, Iowa

etl.json

"source": { "file": { "path": "source.csv" } },
"extractor": { "row": {} },
"transformers": [
{Mesv {3 1,
{ "vertex": { "class": "User" } },
{ "edge": {
"class": "ParentOf",
"joinFieldName": "PARENT_ID",
"direction": "in",
"lookup": "User.ID",
"unresolvedLinkAction": "SKIP"

}
1,
"loader": {
"orientdb": {
"dbURL": "plocal:/temp/mydb",
"dbType": "graph",
"classes": [
{"name": "User", "extends": "V"},
{"name": "ParentOf", "extends": "E"}
1, "indexes": [
{"class":"User", "fields":["ID:Long"], "type":"UNIQUE" }

Import from JSON

If you are migrating from MongoDB or any other DBM S that exports data in JSON format, the JSON extractor is what you need. For

more information look also at: Import-from-PARSE.

This is the input file stored in /tmp/database.json file:

{
"name": "Joe",
nigns
B
"friends": [2,4,5],
"enemies": [6]
H
{
"name": "Suzie",
nigns
2y
"friends": [1,4,6],
"enemies": [5,2]
}

Note that friends and enemies represent relationships with nodes of the same type. They are in the form of an array of IDs. This is

what we need:

e Use the Vertex class "Account" to store nodes

e Use the Edge classes "Friend" and "Enemy" to connect vertices

e Merge and Lookups will be on id property of Account class that will be unique

e In case the connected friend hasn't been inserted yet, create it ("unresolvedLinkAction": "CREATE")

e To speed up lookups, a unique index will be created on Account.it

And this pipeline (logis at debug level to show all the messages):

Import from JSON

"config": {
"log": "debug"
H
"source" : {
"file": { "path": "/tmp/database.json" }
H
"extractor" : {
"json": {}
H
"transformers" : [
{ "merge": { "joinFieldName": "id", "lookup": "Account.id" } },
{ "vertex": { "class": "Account"} },
{ "edge": {
"class": "Friend",
"joinFieldName": "friends",
"lookup": "Account.id",
"unresolvedLinkAction": "CREATE"
L
"edge": {
"class": "Enemy",

-~

"joinFieldName": "enemies",
"lookup": "Account.id",
"unresolvedLinkAction": "CREATE"
3
1,
"loader" : {
"orientdb": {
"dbURL": "plocal:/tmp/databases/db",
"dbuUser": "admin",
"dbPassword": "admin",
"dbAutoDropIfExists": true,
"dbAutoCreate": true,
"standardElementConstraints": false,
"tx": false,
"wal": false,
"batchCommit": 1000,
"dbType": "graph",
"classes": [{"name": "Account", "extends":"V"}, {"name": "Friend", "extends":"E"}, {"name": 'Enemy', "extends":"E"}],
"indexes": [{"class":"Account", "fields":["id:integer"], "type":"UNIQUE_HASH_INDEX" }]

Note also the setting

"standardElementConstraints": false,

This is needed, in order to allow importing the property "id" in the OrientDB Loader. Without this option, the Blueprints standard

would reject it, because "id" is a reserved name.

By executing the ETL process, this is the output:

N
vl

OrientDB etl v.2.1-SNAPSHOT www.orientechnologies.com

feb 09, 2015 2:46:42 AM com.orientechnologies.common.log.0OLogManager log

INFORMAZIONI: OrientDB auto-config DISKCACHE=10.695MB (heap=3.641MB 0s=16.384MB disk=42.205MB)
[orientdb] INFO Dropping existent database 'plocal:/tmp/databases/db'...

BEGIN ETL PROCESSOR

[file] DEBUG Reading from file /tmp/database.json

[orientdb] DEBUG - OrientDBLoader: created vertex class 'Account' extends 'V'

[orientdb]
[orientdb]
[orientdb]
[orientdb]
[orientdb]
[orientdb]
[orientdb]

id:integer]
[0:merge] DEBUG Transformer input: {name:Joe,id:1,friends:[3],enemies:[1]}
[0:merge] DEBUG joinValue=1, lookupResult=null

[0:merge] DEBUG Transformer output: {name:Joe,id:1,friends:[3],enemies:[1]}
[0:vertex] DEBUG Transformer input: {name:Joe,id:1,friends:[3],enemies:[1]}
[0:vertex] DEBUG Transformer output: v(Account)[#11:0]

[0:edge]
[0:edge]
[0:edge]
[0:edge]
[0:edge]
[0:edge]
[0:edge]
[0:edge]
[0:edge]
[0:edge]
[0:edge]
[0:edge]
[0:edge]
[0:edge]
[0:edge]
[0:edge]

DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG

DEBUG orientdb: found @ vertices in class 'null'

DEBUG - OrientDBLoader: created edge class 'Friend' extends 'E'

DEBUG orientdb: found @ vertices in class 'null'

DEBUG - OrientDBLoader: created edge class 'Enemy' extends 'E'

DEBUG orientdb: found @ vertices in class 'null'

DEBUG - OrientDBLoader: created property 'Account.id' of type: integer

DEBUG - OrientDocumentLoader: created index 'Account.id' type 'UNIQUE_HASH_INDEX' against Class 'Account', fields [

Transformer input: v(Account)[#11:0]
joinCurrentValue=2, lookupResult=null

created new vertex=Account#11:1{id:2} v1
created new edge=e[#12:0][#11:0-Friend->#11:1]
joinCurrentvalue=4, lookupResult=null

created new vertex=Account#11:2{id:4} v1
created new edge=e[#12:1][#11:0-Friend->#11:2]
joinCurrentvalue=5, lookupResult=null

created new vertex=Account#11:3{id:5} v1
created new edge=e[#12:2][#11:0-Friend->#11:3]
Transformer output: v(Account)[#11:0]
Transformer input: v(Account)[#11:0]
joinCurrentvalue=6, lookupResult=null

created new vertex=Account#11:4{id:6} v1
created new edge=e[#13:0][#11:0-Enemy->#11:4]
Transformer output: v(Account)[#11:0]

[1:merge] DEBUG Transformer input: {name:Suzie,id:2,friends:[3],enemies:[2]}

[1:merge] DEBUG joinvalue=2, lookupResult=Account#11:1{id:2,in_Friend:[#12:0]} v2

[1:merge] DEBUG merged record Account#11:1{id:2,in_Friend:[#12:0],name:Suzie, friends:[3],enemies:[2]} v2 with found record={na
me:Suzie,id:2, friends:[3],enemies:[2]}

[1:merge] DEBUG Transformer output: Account#11:1{id:2,in_Friend:[#12:0],name:Suzie, friends:[3],enemies:[2]} v2

[1:vertex] DEBUG Transformer input: Account#11:1{id:2,in_Friend:[#12:0],name:Suzie, friends:[3], enemies:[2]} v2

[1:vertex] DEBUG Transformer output: v(Account)[#11:1]

[1:edge] DEBUG Transformer input: v(Account)[#11:1]

[1:edge] DEBUG joinCurrentValue=1, lookupResult=Account#11:0{name:Joe,id:1,friends:[3],enemies:[1],out_Friend:[#12:0, #12:1, #
12:2],out_Enemy: [#13:0]} v5

[1:edge]
[1:edge]
[1:edge]
[1:edge]
[1:edge]
[1:edge]
[1:edge]
[1:edge]
[1:edge]
[1:edge]
end: [#12:
[1:edge]
[1:edge]

DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG

created new edge=e[#12:3][#11:1-Friend->#11:0]

joinCurrentvalue=4, lookupResult=Account#11:2{id:4,in_Friend:[#12:1]} v2

created new edge=e[#12:4][#11:1-Friend->#11:2]

joinCurrentvalue=6, lookupResult=Account#11:4{id:6,in_Enemy:[#13:0]} v2

created new edge=e[#12:5][#11:1-Friend->#11:4]

Transformer output: v(Account)[#11:1]

Transformer input: v(Account)[#11:1]

joinCurrentValue=5, lookupResult=Account#11:3{id:5,in_Friend:[#12:2]} v2

created new edge=e[#13:1][#11:1-Enemy->#11:3]

joinCurrentValue=2, lookupResult=Account#11:1{id:2,in_Friend:[#12:0], name:Suzie, friends:[3],enemies:[2],out_Fri

3, #12:4, #12:5],out_Enemy:[#13:1]} v6

DEBUG
DEBUG

created new edge=e[#13:2][#11:1-Enemy->#11:1]
Transformer output: v(Account)[#11:1]

END ETL PROCESSOR
+ extracted 2 entries (0 entries/sec) - 2 entries -> loaded 2 vertices (0 vertices/sec) Total time: 228ms [0 warnings, O error

s]

Once ready, let's open the database with Studio and this is the result:

ETL - Import from RDBMS

Most of DBM Ss support JDBC driver. All you need is to gather the JDBC driver and put it in classpath or simply in the
$ORIENTDB_HOM E/lib directory.

With the configuration below all the records from the table "Client" are imported in OrientDB from My SQL database.

Example importing a flat table

{
"config": {
"log": "debug"
H
"extractor" : {
"jdbc": { "driver": "com.mysqgl.jdbc.Driver",
"url": "jdbc:mysql://localhost/mysqlcrm",
"userName": "root",
"userPassword": "",
"query": "select * from Client" }
iy
"transformers" : [

{ "vertex": { "class": "Client"} }
1,
"loader" : {
"orientdb": {
"dbURL": "plocal:/temp/databases/orientdbcrm",
"dbAutoCreate":

Example loading records from 2 connected tables

With this example we want to import a database that contains Blog posts in the following tables:

e Authors, in TABLE Author, with the following columns: id and name
e Posts, in TABLE Post, with the following columns: author_id, title and text

To import them into OrientDB we'd need 2 ETL processes.

Importing of Authors

{
"config": {
"log": "debug"
1y
"extractor" : {
"jdbc": { "driver": "com.mysqgl.jdbc.Driver",
"url": "jdbc:mysql://localhost/mysql",
"userName": "root",
"userPassword": "",
"query": "select * from Author" }
1y
"transformers" : [
{ "vertex": { "class": "Author"} }
1,
"loader" : {
"orientdb": {
"dbURL": "plocal:/temp/databases/orientdb",
"dbAutoCreate":
3
3

http://en.wikipedia.org/wiki/JDBC_driver

Import from RDBM S

Importing of Posts

"config": {
"log": "debug"
H
"extractor" : {
"jdbc": { "driver": "com.mysql.jdbc.Driver",
"url": "jdbc:mysqgl://localhost/mysql",
"userName": "root",
"userPassword": "",
"query": "select * from Post" }
1y
"transformers" : [

{ "vertex": { "class": "Post"} },

{ "edge": { "class": "Wrote", "direction" : "in",
"joinFieldName": "author_id",
"lookup":"Author.id", "unresolvedLinkAction":"CREATE"} }

1,
"loader" : {
"orientdb": {
"dbURL": "plocal:/temp/databases/orientdb",
"dbAutoCreate": true

Note the edge configuration has the direction as "in", that means starts from the Author and finishes to Post.

278

Import from DB-Pedia

DBPedia exports all the entities as GZipped CSV files. Features:

e First line contains column names, second, third and forth has meta information, which we'll skip (look at "skipFrom": 1, "skipTo":

3 in CSV transformer)

e The vertex class name is created automatically based on the file name, so we can use the same file against any DBPedia file
e The Primary Key is the "URI" field, where a UNIQUE index has also been created (refer to "ORIENTDB" loader)

e The "merge" transformer is used to allow to re-import or update any file without generating duplicates

Configuration

"config": {
"log": "debug",
"fileDirectory": "/temp/databases/dbpedia_csv/",
"fileName": "Person.csv.gz"

1y

"begin": [

{ "let": { "name": "$filePath", '"value": "$fileDirectory.append($fileName)"} },
{ "let": { "name": "$className", "value": "$fileName.substring(0, $fileName.indexOf('.'))"} }

1

"source" : {
"file": { "path": "$filePath", "lock" : true }
iy
"extractor" : {
{ "csv": { "separator": ",", "nullvalue": "NULL", "skipFrom":
iy
"transformers" : [
{ "merge": { "joinFieldName":"URI", "lookup":"V.URI" } },
{ "vertex": { "class": "$className"} }
1,
"loader" : {
"orientdb": {
"dbURL": "plocal:/temp/databases/dbpedia",
"dbUser": "admin"
"dbPassword": "admin",
"dbAutoCreate": true,
"tx": false,
"batchCommit": 1000,
"dbType": "graph",
"indexes": [{"class":"V", "fields":["URI:string"], "type"
}
}

1, "skipTo": 3 } },

:"UNIQUE" }]

http://oldwiki.dbpedia.org/DBpediaAsTables

Import from Parse

Parse is a very popular BaaS (Backend as a Service), acquired by Facebook. Parse uses M ongoDB as a database and allows to export the
database in JSON format. The format is an array of JSON objects. Example:

"user": {

"__type": "Pointer",

"className": "_User",

"objectId": "Ldlskf4mfs"
H
"address": {

"__type": "Pointer",

"className": "Address",

"objectId": "1lvkDfj4dmS"
H
"createdAt": "2013-11-15T18:15:59.336Z",
"updatedAt": "2014-02-27T23:47:00.440Z",
"objectId": "Ldk39fDkcj",
"ACL": {

"Lfo33mfDkf": {

"write":
}
weny g

"read":

}
Ao
"user": {
"__type": "Pointer",
"className": "_User",
"objectId": "Lflfem3mFe"
}
"address": {
"__type": "Pointer",
"className": "Address",
"objectId": "Ldldjfj3dd"
}
"createdAt": '"2014-01-01T18:04:02.3212",
"updatedAt": '"2014-01-23T20:12:23.9482",
"objectId": "fkfj49fjFFN",
"ACL": {
"d1fnDJckss": {
"write":
}
ey g

"read":

Notes:

Each object has its own objectid that identifies the object in the entire database.

Parse has the concept of class , like OrientDB.

Links are similar to OrientDB RID (but it requires a costly JOIN to be traversed), but made as an embedded object containing:
o className as target class name
o objectId as target objectld

Parse has ACL at record level, like OrientDB.

In order to import a PARSE file, you need to create the ETL configuration using JSON as Extractor.

Example

https://parse.com/
http://www.orientechnologies.com/docs/last/orientdb.wiki/Security.html#record-level-security

In this example, we're going to import the file extracted from Parse containing all the records of the user class. Note the creation of the
class user in OrientDB, which extends v (Base Vertex class). We created an index against property User.objectId to use the same
ID, similar to Parse. If you execute this ETL import multiple times, the records in OrientDB will be updated thanks to the merge

feature.
{
"config": {
"log": "debug"
H

"source" : {
"file": { "path": "/temp/parse-user.json", "lock" : true }
1y
"extractor" : {
"json": {}
1y
"transformers" : [
{ "merge": { "joinFieldName":"objectId", "lookup":"User.objectId" } },
{ "vertex": { "class": "User"} }
1,
"loader" : {
"orientdb": {
"dbURL": "plocal:/temp/databases/parse",
"dbuUser": "admin",
"dbPassword": "admin",
"dbAutoCreate": true,
"tx": false,
"batchCommit": 1000,
"dbType": "graph",
"classes": [
{"name": "User", "extends": "V"}
1,
"indexes": [
{"class":"User", "fields":["objectId:string"], "type":"UNIQUE_HASH_INDEX" }

See also:

Import from JSON.

Logging

OrientDB handles logs using the Java Logging Framework, which is bundled with the JVM. The specific format it uses derives from the
oLogrFormatter class, which defaults to:

<date> <level> <message> [<requester>]

e <date> Shows the date of the log entry, using the date format YYYY-MM-DD HH:MM:SS:SSS .
e <level> Shows the loglevel.
e <message> Shows the log message.

e <class> Shows the Java class that made the entry, (optional).

The supported levels are those contained in the JRE class java.util.logging.Level . From highest to lowest:

® SEVERE
® WARNING
® INFO
® CONFIG
® FINE
® FINER
® FINEST

By default, OrientDB installs two loggers:

e console : Logs to the shell or command-prompt that starts the application or the server. You can modify it by setting the
log.console.level variable.

e file : Logs to the log file. You can modify it by setting the log.file.level variable.

Configuration File

You can configure logging strategies and policies by creating a configuration file that follows the Java Logging M essages configuration

syntax. For example, consider the following from the orientdb-server-log.properties file:

Specify the handlers to create in the root logger

(all loggers are children of the root logger)

The following creates two handlers

handlers = java.util.logging.ConsoleHandler, java.util.logging.FileHandler

Set the default logging level for the root logger
.level = ALL

Set the default logging level for new ConsoleHandler instances
java.util.logging.ConsoleHandler.level = INFO

Set the default formatter for new ConsoleHandler instances
java.util.logging.ConsoleHandler.formatter = com.orientechnologies.common.log.OLogFormatter

Set the default logging level for new FileHandler instances
java.util.logging.FileHandler.level = INFO

Naming style for the output file
java.util.logging.FileHandler.pattern=../log/orient-server.log
Set the default formatter for new FileHandler instances
java.util.logging.FileHandler.formatter = com.orientechnologies.common.log.0OLogFormatter
Limiting size of output file in bytes:
java.util.logging.FileHandler.limit=10000000

Number of output files to cycle through, by appending an

integer to the base file name:
java.util.logging.FileHandler.count=10

When the log properties file is ready, you need to tell the JVM to use t, by setting java.util.logging.config.file System property.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/logging/Level.html
http://www.javapractices.com/topic/TopicAction.do?Id=143

$ java -Djava.util.logging.config.file=mylog.properties

Setting the Log Level

To change the log level without modifying the logging configuration, set the 1log.console.level and log.file.level system variables.
These system variables are accessible both at startup and at runtime.

Configuring Log Level at Startup

You can configure log level at startup through both the orientdb-server-config.xml configuration file and by modifying the JVM
before you start the server:

Using the Configuration File

To configure log level from the configuration file, update the following elements in the <properties> section:

<properties>
<entry value="info" name="log.console.level" />
<entry value="fine" name="log.file.level" />

</properties>

Using the JVM

To configure log level from the JVM before starting the server, run the java command to configure the log.console.level and

log.file.level variables:

$ java -Dlog.console.level=INFO -Dlog.file.level=FINE

Configuring Log Level at Runtime

You can configure log level at runtime through both the Java API and by executingan HTTP posT against the remote server.

Using Java Code

Through the Java API, you can set the system variables for logging at startup through the system.setProperty() method. For instance,

public void {
System.setProperty("log.console.level", "FINE");

Using HTTP POST

Through the HTTP requests, you can update the logging system variables by executinga posT against the URL: /server/log.

<type>/<level>

e <type> Defines the logtype: console or file .

e <level> Defines the loglevel.
Examples

The examples below use cURL to execute the HTTP pPosT commands against the OrientDB server. It uses the server root user and

password.

e Enable the finest tracing level to the console:

https://en.wikipedia.org/wiki/CURL

$ curl -u root:root -X POST http://localhost:2480/server/log.console/FINEST

e Enable the finest tracing level to file:

$ curl -u root:root -X POST http://localhost:2480/server/log.file/FINEST

Change logging on the client

On the client is the same as for the server, but you should rather configure the file config/orientdb-client-log.properties and add this

at your client's JVM:

$ java -Djava.util.logging.config.file=config/orientdb-client-log.properties

Install Log Formatter

OrientDB Server uses its own log formatter. In order to enable the same for your application, you need to include the following line:

OLogManager .installCustomFormatter();

The Server automatically installs the log formatter. To disable it, use orientdb.installCustomFormatter .

$ java -Dorientdb.installCustomFormatter=

Debugging Logger

Java Logging Framework runtime has a known problem with logging from shutdown hooks, sometimes log entries may be lost.
OrientDB uses shutdown hooks to properly shutdown its internals, so it also may be affected by this problem, something may go
wrong silently on shutdown. To workaround this problem OrientDB provides a special logger — the debugging logger. To activate it

provide following command line argument to your JVM :

-Djava.util.logging.manager=com.orientechnologies.common.log.OLogManager$bDebuglLogManager

Use this logger for debugging and troubleshooting purposes only, since it may interfere with your production logging

configuration.

Make sure $pebugLogManager part is not interpreted as a shell variable substitution. To avoid the substitution apply escaping

specific to your shell environment.

Scheduler

OrientDB has a Scheduler of events you can use to fire your events on regular basis. To manage events you can use both SQL and Java

API. The scheduler gets the popular CRON expression syntax. The scheduled event, when fired, executes a Database

Resources

e CRON expressions on Wikipedia

e CRON expression maker is an online resource to create CRON expressions

Schedule an event

Via SQL

In order to schedule a new event via SQL, all you need is to create a new record in the oschedule class. Example on scheduling the

event "myEvent" that calls the function "myFunction" every second:

INSERT INTO oschedule
SET name = 'myEvent',
function = (SELECT FROM ofunction WHERE name = 'myFunction'),
rule = \"@/1 * * * * 2\"

Via Java API

db.getMetadata().getScheduler().scheduleEvent(
new 0ScheduledEventBuilder().setName("myEvent").setRule("0/1 * * * * 2")
.setFunction(func).build());

Update an event

Via SQL

To update the scheduling of an event, update the record with the new rule . Example:

UPDATE oschedule SET rule = "0/2 * * * * 2" WHERE name = 'myEvent'

Via Java API

To update an event, remove it and reschedule it.

db.getMetadata().getScheduler().removeEvent("myEvent");
db.getMetadata().getScheduler().scheduleEvent(
new OScheduledEventBuilder().setName("myEvent").setRule("0/2 * * * * 2")
.setFunction(func).build());

Remove an event

Via SQL

To cancel a scheduled event, just delete the record. Example:

DELETE oschedule WHERE name = 'myEvent'

https://en.wikipedia.org/wiki/Cron#CRON_expression
https://en.wikipedia.org/wiki/Cron#CRON_expression
http://www.cronmaker.com/

Via Java API

db.getMetadata().getScheduler().removeEvent("myEvent™)

Tutorial

In this tutorial we want to purge all the records older than 1 year.

1) Create a Function

First, create a SQL function that delete the records. To have the date of 1y ago you can use the expression sysdate() - 31536000000 ,

where 31536000000 represents the number of milliseconds in a year. You can this via SQL or Java API.

Via SQL

CREATE FUNCTION purgeHistoricalRecords
"DELETE FROM Logs WHERE date < (sysdate() - 31536000000)"
LANGUAGE SQL

Via Java API

OFunction func = db.getMetadata().getFunctionLibrary().createFunction("purgeHistoricalRecords");
func.setLanguage("SQL");

func.setCode("DELETE FROM Logs WHERE date < (sysdate() - 31536000000)");

func.save();

return func;

2) Schedule the event

The second step is scheduling the event. The CRON expression for "every midnight" is ee ee * * * 2 . You can this via SQL or Java
APL

Via SQL

INSERT INTO oschedule

SET name = 'purgeHistoricalRecordsAtMidnight',
function = (SELECT FROM ofunction WHERE name = 'purgeHistoricalRecords'),
rule = \"00 00 * * * 2\"

Via Java API

db.command(new OCommandSQL (
"INSERT INTO oschedule SET name = 'purgeHistoricalRecordsAtMidnight', function = ?, rule = \"00 00 * * * ?2\""))
.execute(func.getId());

Studio

Studio Home page

Studio is a web interface for the administration of OrientDB that comes in bundle with the OrientDB distribution.

If you run OrientDB in your machine the web interface can be accessed via the URL:

http://localhost:2480

This is the Studio 2.2 Homepage.

A2
)Ov ient ah Server Management

Database | GratefulDeadConcerts :

User

Password

From here, you can :

e Connect to an existing database
e Drop an existing database
e Create a new database

e Import a public database

Go to the Server M anagement Ul

Connect to an existing database

To Login, select a database from the databases list and use any database user. By default reader/reader can read records from the

database, writer/writer can read, create, update and delete records. admin/admin has all rights.

Drop an existing database

Select a database from the databases list and click the trash icon. Studio will open a confirmation popup where you have to insert

o Server User

e Server Password

and then click the "Drop database" button. You can find the server credentials in the §ORIENTDB_HOM E/config/orientdb-server-
config.xml file:

<users>
<user name="root" password="pwd" resources="*" />
</users>

287

Studio

Create a new database

To create a new database, click the "New DB" button from the Home Page

er Management

New Database

Database name

Type graph

Storage plocal
Type

Server
User

Server

You can find the server credentials in
$ORIENTDB_HOME/config/orientdb-server-config.xml file:

<users>
<user name="root" password="pwd" resources="x" />
</users>

u Create database

Some information is needed to create a new database:

e Database name

e Database type (Document/Graph)
e Storage type (plocal/memory)

e Server user

e Server password

You can find the server credentials in the SORIENTDB_HOM E/config/orientdb-server-config.xml file:

<users>
<user name="root" password="pwd" resources="*" />
</users>

Once created, Studio will automatically login to the new database.

Import a public database

Studio 2.2 allows you to import databases from a public repository. These databases contains public data and bookmarked queries that
will allow you to start playing with OrientDB and OrientDB SQL. The classic bundle database 'GratefulDeadConcerts' will be moved to
this public repository.

288

Studio

anagement

Import Public Databases

Server User

Server Password

Description License Download

GratefulDeadConcerts Database containing the concerts of the Grateful Dead band Creative Commons r+Y

To install a public database, you will need the Server Credentials. Then, click the download button of the database that you are
interested in. Then Studio will download and install in to your SORIENTDB_HOM E/databases directory. Once finished, Studio will
automatically login to the newly installed database.

289

Execute a query

Studio supports auto recognition of the language you're using between those supported: SQL and Gremlin. While writing, use the auto-

complete feature by pressing Ctrl + Space.
Other shortcuts are available in the query editor:

e Ctrl + Return to execute the query or just click the Run button
e Ctrl/Cmd + Z to undo changes

e Ctrl/Cmd + Shift + Z to redo changes

e Ctrl/Cmd + F to search in the editor

e Ctrl/Cmd + /to toggle a comment

Note: If you have multiple queries in the editor, you can select a single query with text selection and execute it with Ctrl +

Return or the Run button

»
'Oriem Schema & Security O Graph </> Functions & GratefulDeadConcerts (admin) v
select from V| *
Run: Ctrl + Return ‘ Undo: Ctrl/Cmd + Z | Redo: Ctrl/Cmd + Shift + Z -
Search : Ctrl/Cmd + F \ Toggle Comment: Ctrl/Cmd +/ | Autocomplete: Ctrl + Space e W s
Search in history W W Bookmarks
select from V [} 4|
METADATA PROPERTIES IN out
@rid+ @class< @version+ name < song_type: performances< type< followed by < written_by <+ sung_by < followed by <+ written_by< sung by<
#9:10 V. 363 JACK STRAW original 473 song
[vore | [vore |
#9:0) 1
#9:2 Vv 15 IM A MAN cover 1 song
#9:3 \ 305 NOT FADE cover 531 song
AWAY
[vore | [vore |
#9:4 \" 265 BERTHA original 394 song
[vore | [vore |
#9:5) 177 GOING DOWN cover 293 song
THE ROAD
FEELING BAD

By clicking any @rid value in the result set, you will go into document edit mode if the record is a Document, otherwise you will go into

vertex edit.

You can bookmark your queries by clicking the star icon in the results set or in the editor. To browse bookmarked queries, click the

Bookmarks button. Studio will open the bookmarks list on the left, where you can edit/delete or rerun queries.

A
’Oriem @ Browse = Schema & Security O Graph </> Functions SDB & GratefulDeadConcerts (admin) v

x
Bookmarks %
trl/Cmd + Shift + Z .
d +/ | Autocomplete: Ctrl + Space (2] W e
All Users
w % Bookmarks
All vertices
Ox®
Select all
PROPERTIES IN ouT
song_type< performances< type: followed_by < written_by < sung_by < followed by < written_by:= sung_by
original 473 song
[vore | [vore |
cover il song
cover 531 song
[vore | [vore |
original 394 song
[vore | [vore |
N cover 293 song
pD
[vore | Er

Studio saves the executed queries in the Local Storage of the browser, in the query settings, you can configure how many queries studio

will keep in history. You can also search a previously executed query, delete all the queries from the history or delete a single query.

From Studio 2.0, you can send the result set of a query to the Graph Editor by clicking on the circle icon in the result set actions. This
allows you to visualize your data graphically.

Look at the JSON output

Studio communicates with the OrientDB Server using HTTP/RESt+JSON protocol. To see the output in JSON format, press the RAW
tab.

select from V limit 5 oO*x@

14

2 "result": [

"@version"
"@class": "v"

Query executed in 0.045 sec. Returned 5 record(s) Table Raw

Edit Document

g
Orientl
»

Browse = Schema curity O Graph </> Functions

& GratefulDeadConcerts (admin) v

Document:

status *

password *

name *

ACTIVE

{SHA-
256)8C6976E5B5410415BDEQ0BBDADEE15DFB167A9CB73FC4

admin

STRING

STRING

STRING

roles (ORole) ©

Edit Vertex

»
’Oriem @ Browse = Schema & Security O Graph </> Functions = & GratefulDeadConcerts (admin) v

In Edges Vertex: \/ - #9:1 - Version 25 (@) B Save Out Edges

followed_by (4) © . followed_by (5) ©
name HEY BO DIDDLEY STRING : written_by (1) ©
p sung_by (1) @
song_type cover STRING :
4
performances 5 INTEGER B .
type | song STRING s .

Schema Manager

OrientDB can work in schema-less mode, schema mode or a mix of both. Here we'll discuss the schema mode. To know more about

schema in OrientDB go here

A3
)Orient @ Browse = Schema & Security O Graph </> Functions & GratefulDeadConcerts (admin) v

{ b%ﬁ}'fh class Q

Name @ SuperClass @ Alias Abstract Clusters @ Default Cluster Cluster Selection @ Records Actions

E [0] 10 round-robin ¢ | 7047 = Query Al |+ New Record | [0
Foo \Y% [13] 13 default + 0 = Query All 4 New Record
OFunction uyl 7 round-robin % | 1 = Query Al + New Record
Oldentity v -] af round-robin % 8 S Query Al + New Record
ORIDs [6] 6 round-robin ¢ | 0 = Query Al + New Record
ORestricted 11 -1 round-robin ¢ | 0 = Query All 4 New Record
ORole Oldentity [4] 4 round-robin ¢ | 5 = Query Al + New Record
OSchedule (8] 8 round-robin ¢ 0 = Query All 4 New Record
OTriggered v 1] = round-robin ¢ | 0 = Query All 4 New Record
OUser Oldentity 5] 5 round-robin ¢ | 3 [P = Query All || + New Record
Vv 91 9 round-robin ¢ | 809 = Query All 4 New Record |05/
_studio [12] 12 round-robin ¢ 4 GEUELEE = Query All |+ New Record | mfslfvly]
followed_by E 1] 11 round-robin ¢ | 7047 [= Query All || + New Record

Here you can :

e Browse all the Classes of your database

e Create anew Class

e Rename/Drop a Class

e Change the cluster selection for a Class

e FEdit aclass by clicking on a class row in the table

e View all indexes created

Create a new Class

To create a new Class, just click the New Class button. Some information is required to create the new class.

e Name

SuperClass
Alias (Optional)
Abstract

Here you can find more information about Classes

= Schema Surity rap </> Functions S DB & GratefulDeadConcerts (admin)
Schema Manager (% lew Class I iE All Indexes I Rebuild All Indexes l
Search class . Super R

Name @ SuperClass © Alias Abstrl Class

E Alias = Query All 4+ New Record

Foo \%] Fran = Query Al + New Record

OFunction = Query All + New Record

Oldentity 7 | B Query All + New Record

ORIDs 5 = Query All |+ New Record

ORestricted v | Sleee = Query All || + New Record

ORole Oldentity - ! 1] EEEtY = Query All |+ New Record

OSchedule 8] 8 round-robin % 0 S Query Al + New Record

OTriggered g 1] =l [round-robin ¢ | 0 = Query All ||+ New Record

OUser Oldentity 5] 5 round-robin + | 5 SQuery All |+ New Record

Y [9] 9 [round-robin | 809 = Query All |+ New Record

_studio [12] 12 [round-robin ¢ | 4 = Query All |+ New Record

followed by E [11] 1 [round-robin % 7047 = Query All |+ New Record

>

View all indexes

When you want to have an overview of all indexes created in your database, just click the All indexes button in the Schema UI. This

will provide quick access to some information about indexes (name, type, properties, etc) and you can drop or rebuild them from here.

@ Browse Schema & Security O Graph </> Functions & GratefulDeadConcerts (admin) v

Q
Name Type Class Properties Engine Actions
dictionary DICTIONARY [undefined] SBTREE £ Rebuild

Foo.bar NOTUNIQUE Foo [bar] SBTREE £ Rebuild

ORole.name UNIQUE ORole [name] SBTREE 2 Rebuild

OUser.name UNIQUE OUser [name] SBTREE 2 Rebuild [}

Class Edit

& GratefulDeadConcerts (admin) v

OrientDB @ Browse = Schema & Security O Graph </> Functions

y

Foo (@

Properties @

+ New Property

Name Type Linked_Type Linked_Class Mandatory Read_Only Not_Null Min Max Collate Actions

bar STRING : default :

Indexes ©
+ New Index

Name Type Properties Engine Actions

Foo.bar NOTUNIQUE ["bar"] SBTREE < Rebuild faf

Property

Add Property

S DB & GratefulDeadConcerts (admin) v

Save = Query All + New Record @ Drop

E=IENE & Security O Graph </> Functions

Property:

Properties @ Type * s
Linked 5
Type
Name Type Linked_Type I.I Linked : Collate Actions
- . Class - ~
bar STRING & I | default & Rename
Min @ Drop
Indexes @ Max
M it R 1} Not Null

T _ Mandatory (| Read Only (| Not Nul

Name Type ©

Foo.bar NOTUNIQUE

Close

Indexes

Create new index

Class

Index:

Name *

Type *

Fields

297

Graph Editor

Since Studio 2.0 we have a new brand graph editor. Not only you can visualize your data in a graph way but you can also interact with

the graph and modify it.

To populate the graph area just type a query in the query editor or use the functionality Send To Graph from the Browse Ul

A3
)Oriem @ Browse = Schema & Security O Graph </> Functions DB & GratefulDeadConcerts (admin) v

Graph Editor (@ [® Save Configuration © Add Vertex I @ Clear Canvas I More v I
1 select from V limit 5|

[\‘
LY o
\ J
4"
jo &
et %,

Supported operations in the Graph Editor are:

e Add Vertices

e Save the Graph Rendering Configuration
e Clear the Graph Rendering Canvas

e Delete Vertices

e Remove Vertices from Canvas

e Edit Vertices

e Inspect Vertices

e Change the Rendering Configuration of Vertices
e Navigating Relationships

e Create Edges between Vertices

e Delete Edges between Vertices

e Inspect Edges

e Edit Edges

Add Vertices

To add a new Vertex in your Graph Database and in the Graph Canvas area you have to press the button Add Vertex. This operation is

done in two steps.

The first step you have to choose the class for the new Vertex and then click Next

& GratefulDeadConcerts (admin) v

</> Functions S DB

O Graph

= Schema & Security

A
Orient @ Browse
»

New Vertex

Graph Editor (@ Clear Canvas

1 select from V 1

Next

Qv

In the second step you have to insert the fields values of the new vertex, you can also add custom fields as OrientDB supports Schema-

Less mode. To make the new vertex persistent click to Save changes and the vertex will be saved into the database and added to the

canvas area

& GratefulDeadConcerts (admin) v

= Schema & Security

@ Browse

A
Orient
»

New Vertex

Graph Editor (@ Clear Canvas

1 select from V 1i

o

r e

Delete Vertices

Open the circular menu by clicking on the Vertex that you want to delete, open the sub-menu by passing hover the mouse to the menu

entry more (...) and then click the trash icon.

Remove Vertices from Canvas

Open the circular menu , open the sub-menu by passing hover the mouse to the menu entry more (...) and then click the eraser icon.

Edit Vertices

Open the circular menu and then click to the edit icon, Studio will open a popup where you can edit the vertex properties.

Inspect Vertices

If you want to take a quick look to the Vertex property, click to the eye icon.

A3
)Oriem @ Browse =R e & Security O Graph </> Functions SDB & GratefulDeadConcerts (admin) v

V-#9:4- Version 265 x
Save Configuration

Properties m

@rid #9:4

© Add Vertex I W Clear Canvas I More v I

@class Vv

name BERTHA

song_type original

performances 394

type song

=pB & GratefulDeadConcerts (admin) v

A
)Oriem @ Browse = Schema & Security O Graph </> Functions

V-#9:4- Version 265
Save Configuration

© Add Vertex I @ Clear Canvas I More v I

Settings m

Display

Icon

Radius

Fill

Stroke

Save configuration

Javascri pt:void(0)

Navigating Relationships
Create Edges between Vertices

Delete Edges between Vertices

Inspect Edges

Edit Edges

Functions

OrientDB allows to extend the SQL language by providing Functions. Functions can be used also to create data-driven micro services.
For more information look at Functions.

A
)Or\em @ Browse = Schema & Security O Graph </> Functions DB & GratefulDeadConcerts (admin) v
Functions
Functions Management (@ B Save W Delete
Name foo Language Javascript j Idempotent
a w
1 return aj|

Security

Studio 2.0 includes the new Security M anagement where you can manage Users and Roles in a graphical way. For detailed information

about Security in OrientDB, visit here

Users

Here you can manage the database users:

Search Users
Add Users

Delete Users

Edit User: roles can be edited in-line, for name, status and password click the Edit button

» i X i I}
}Orlem)E @ Browse Security | O Graph </> Functions & GratefulDeadConcerts (admin) v

Security Manager (@

Users Roles

‘ a [onim

Name Roles Status Actions

Add Users

To add a new User, click the Add User button, complete the information for the new user (name, password, status, roles) and then save

to add the new user to the database.

S DB & GratefulDeadConcerts (admin) v

= Schema </> Functions

@ Browse

b
Orient
»

Security Manager (@

Users Roles Password *

Status * ACTIVE :

© Add user

Search user

Name @ Roles al Actions

- [reaser] o e
reader
Prova
VS Add reader

writer

Delete

Roles

Here you can manage the database roles:

e Search Role
e Add Role
e Delete Role
e Edit Role

Schema & Security O Graph </> Functions & GratefulDeadConcerts (admin) v

Security Manager (@
Users Roles
P —— e —
QNS Permissions
Name Mode Actions Name Delete Update Read Create
admin [Allow all but # database.bypassrestricted v 4 4 4
reader Deny all but #
writer Deny all but #

To add a new User, click the Add Role button, complete the information for the new role (name, parent role, mode) and then save to add

the new role to the database.

</> Functions & GratefulDeadConcerts (admin) v

S DB

@ Browse

New Role

Security Manager (@

Users Roles Inherited Role * 4
Mode * 5

Search role - © Add Rule
Name @ Inherited Role Mode Read Create
admin Allow all but % Close ™ ™
epico Prova [Allowall but ¢ | e
Prova admin | Allowall but ¢
reader | Denyallbut ¢
writer | Denyallbut ¢

Add Rule to a Role

To add a new security rule for the selected role, click the Add Rule button. This will ask you the string of the resource that you want to

secure. For a list of available resources, visit the official documentation here

Then you can configure the CRUD permissions on the newly created resource.

Security

New Rule

Add Rule

305

Database Management

This is the panel containing all the information about the current database.

Structure

Represents the database structure as clusters. Each cluster has the following information:

e 1D ,is the cluster ID
® Name , is the name of the cluster
e Records , are the total number of records stored in the cluster
e conflict Strategy , is the conflict strategy used. I empty, the database's strategy is used as default
b= — : " .
')Onent‘ 3 @ Browse = Schema & Security O Graph </> Functions & GratefulDeadConcerts (admin) v
Database Management (@
Structure Configuration Export
Clusters are sets of records grouped by a mean. Any mean you want to assign. You can use a Cluster like a Table of the Relational DBMS world, namely to group records of the same type. Or you could want
to group records by different logics.
There are two kinds of clusters: Physical and In-memory.The first one is persistent, the second one is volatile.
ID Name Records Conflict Strategy
1 index 3 version 3
5 ouser 3 :
10 e 0 +
11 followed_by 7047 +
13 foo 0 :
8 oschedule 0 :
9 v 809 +
4 orole 3 :
3 default 0 version 3
7 ofunction 1 :
12 _studio y | 3
2 manindex 1 version :
6 orids 0 :
0 internal 3 version 3
localhost:9000/#/

Configuration

Contains the database configuration and custom properties. Here you can display and change the following settings:

e dateFormat , is the date format used in the database by default. Example: yyyy-MM-dd

e dateTimeFormat is the datetime format used in the database by default. Example: yyyy-MM -dd HH:mm:ss
® localeCountry , is the country used. "NO" means no country set

® localelLanguage , is the language used. "no" means no language set

® charSet , is the charset used. Default is UTF-8

® timezone , is the timezone used. Timezone is taken on database creation

e definitionversion , is the internal version used to store the metadata

e clusterSelection , is the strategy used on selecting the cluster on creation of new record of a class

® minimumClusters , minimum number of clusters to create whenat class creation

e conflictStrategy , is the database strategy for resolving conflicts

»
')Oriem @ Browse = Schema & Security O Graph </> Functions =] & GratefulDeadConcerts (admin) v

Database Management (@

Structure Configuration Export

Save
Name Value
dateFormat yyyy-MM-dd

dateTimeFormat yyyy-MM-dd HH:mm:ss

localeCountry UK
localeLanguage EN

charSet UTF-8
timezone GMT
definitionVersion 9
clusterSelection :
minimumClusters 1
conflictStrategy version :

Export

Allows to export the current database in GZipped JSON format. To import the file into another database, use the Import Console

Command.

»
»)Orient @ Browse = Schema & Security O Graph </> Functions = & GratefulDeadConcerts (admin) v

Database Management (@)
Structure Configuration Export
Export Database OrientDB Server exports the database in JSON format. Click the Export Database button to download a gzip compressed file containing

the JSON file. You can re-import it by using OrientDB command line console

Dashboard

Studio 2.2 Enterprise Edition includes a new easy to read and single-page Dashboard with costantly updated reports. The Dashboard
shows a graphical presentation of the current status and historical trends of each node joining y our cluster. Performance indicators are
reported in order to enable instantaneous and informed decisions which you can make at a glance.

Here you can see the Dashboard reporting the status of a cluster composed of two nodes.
For each node you can monitor several information divided in two main sections:
e System report

o CPU, RAM, DISK CACHE and DISK used
o status of the node

O Operations per second

O Active Connections

o Network Request

O Average Latency

O Warnings

e CRUD operations: includes a Live chart of CRUD operations in real time.

Y
Orient
»

& Servers Management
Dashboard

locall local2

0.0% - 1.0% 0.0% 97.0% 0.0% - 1.0% 0.0% 97.0%
100 o 10 0 100 0 00 0 100 o 100

100 0 100 0

cpu RAM DISK CACHE DISK cpu DISK CACHE DISK

64.37 MB 1 3.56 GB 128.03KB /3.13 GB 20.02 MB/ 3.56 GB 128.03 KB 13.13 GB.
Status: ONLINE Opsisec: 0 Status: ONLINE Opsisec: 0

Active Connections: 1 Network Requests: 1 Active Connections: 0 Network Requests: 0
Average Latency: 0 Warnings: 0 Average Latency: 0 Warnings: 0

CRUD Operations locall CRUD Operations local2

/ l
/b |
[1 \
R R B KR R R R m e] T
10508 R o0 et 7516

M Create MRead M Update MIDelete

T T T]
170819 170823

M Create M Read M Update MIDelete

Server Management

This is the section (available only for the Enterprise Edition) to work with OrientDB Server as DBA/DevOps. This control panel

coming from OrientDB 2.1 Studio has been enriched with several new features for the new Enterprise Edition.

On the top of the page you can chose your server, visualize its system information and then navigate all statistics and facts related to it
through the available tabs.

Overview

This panel summarizes all the most important information about the current cluster:

® CPU, RAM, DISK CACHE and DISK used
® Status

® Operations per second

® Active Connections

® Warnings

e Live chart with CRUD operations in real-time

>
- Orient & Servers Management

Servers Management

Server > Status: ONLINE > Java version: 1.8.0_05 > Java vendor: Oracle Corporation
> Profiler Status > Os name: Mac 0S X > Num.CPU: 4
locall M > Address: 192.168.1.128 [2424,2480] > Os arch: x86_64 > Agent Version : 2.2

CONNECTIONS METRICS DATABASES WARNINGS LoGS PLUGINS CONFIGURATION

Server locall CRUD Operations

T T T —
173533 173539 173545 173551
M Create W Read M Update MDelete

Connections

It displays all the active connections to the server. For each connection reports the following information:

® Session ID , as the unique session number

e Client , as the unique client number

® Address , is the connection source

® Database , the database name used

e User , the database user

e Total Requests , as the total number of requests executed by the connection

e command Info , as the running command

e command Detail , as the detail about the running command

® Last Command On , is the last time a request has been executed

e Last command Info , is the informaton about last operation executed

e Last Command Detail , is the informaton about the details of last operation executed
® Last Execution Time , is the execution time o last request

e Total Working Time , is the total execution time taken by current connection so far
® Connected Since , is the date when the connection has been created

® Protocol , is the protocol among HT TP and Binary

e cClient ID, atext representing the client connection

® Driver , the driver name

http://orientdb.com/enterprise/

e Commands , a command button to Interrupt or kill each session.

Servers Management

Server > Status: ONLINE > Javaversion: 1.8.0_05 > Javavendor: Oracle Corporation
> Profiler Status > Osname: Mac OS X > NumCPU: 4
locall % > Address: 192.168.1.128 [2424,2480] > Osarch: x86_64 > Agent Version : 2.2
OVERVIEW CONNECTIONS METRICS DATABASES WARNINGS LoGs PLUGINS CONFIGURATION

Below al the active connections. Keep in mind that HTTP connections are stateless, 5o no database is retained and usually after a short timeout (seconds) they are killed. Binary connections, instead, remain in life until the connection client closes it. Binary
connections are used by the Orient Console tool and by any Orient Java applications that uses the native Java API

Search connections Q
Session Total Command Command LastCommand LastCommand LastCommand LastExecution Total Working Client
Client Address Database User Requests Info Detail on Info Detail Time Time Connected Since Protocol 1D Driver Commands
-1 1843 /0:0:0:0:0:0:0:1:61021 - - 16 Listening - 1970-01-01 Serverstaus - al 9 2015-12-10 http - Qinterrupt
005959 17:38:57 kil
2077 127.0.0.1:61885 - - 1 Server - 2015-12-10 - - o o 2015-12-10 http - @interrupt
status 17:41:58 17:41:58 aKil

Metrics

This panel shows all the metrics in 4 different tabs. To learn more about the available metrics please refer to the Profiler section.

® Chronos

Servers Management

Server > Status: ONLINE > Java version: 1.8.0_05 > Java vendor: Oracle Corporation
> Profiler Status > Os name: Mac OS X > Num.CPU: 4
local1 M > Address: 12.168.1.128 [2424,2480] > Osarch: x86 64 > AgentVersion:2.2
OVERVIEW CONNECTIONS METRICS DATABASES WARNINGS LoGs PLUGINS CONFIGURATION
Chronos Counters Stats Hook Values

s et Q
Name Entries Average Total Max win Last Last Execution
db.OpenBeer.synch 1 18 18 18 1 18 10112115 - 17:08:09
server.network requests 2517 43 100138 55537 0 1 10112115 - 17:46:05

® Counters

v
Orient
A

Servers Management

Server > Status: ONLINE > Javaversion: 180 05 > Java vendor: Oracle Corporation
> Profier Status: > 0s name: Mac 0S X > NumCPU:4
local. b > Acress: 192.168.1.128 [2424,2450] > 0s arch x86_64 > Agent Version : 22
OVERVIEW CONNECTIONS METRICS DATABASES WARNINGS Locs PLUGINS GLOBAL CONFIGURATION SERVER CONFIGURATION
Chronos m Stats Hook Values
Q
Name Vaiue
db GratefuiDeadConcerts cache levell. cache found 1021
leveit B2

db GratefulDeadConcerts query indexUsed s
db GratefuiDeadConcerts queryCache.fit 2
b GratefulDeadGongerts. queryGache. miss 126
isrbuted.db GratefulDeadConcerts.msgSent 1287
disrbuted. node focal 1 msgReceived 1287
disrbuted. node Jocal2 msgReceived 1287
disrbuted. node msgReceived 2574
server hitp.00:0:0:0:0:0:1 meout 1
servernttp 127.0.0.1 closed 2086

® Stats

S
Orient Servers Mana
- Orient s Servers Mana

Servers Management

Server > Status: ONLINE > Java version: 18.0.05 > Java vendor: Oracle Corporation
ey > Profier Status: > Osname: Mac 0S X > NumCPU:4
oce! > Address: 192.168.1.128 [2424,2480] > Os arch: x86_64 > Agent Version: 2.2
OVERVIEW CONNECTIONS METRICS DATABASES WARNINGS LoGs PLUGINS GLOBAL CONFIGURATION SERVER CONFIGURATION
Q
Name Entries Average Total Max Min Last Last Execution
process.runtime availableMemry 2078 sa878184 163427228472 110456440 4765104 42617808 1112015 - 155136
2078 o 461 29 o o 1112115 - 155136
process runtime diskCache Total 2978 3559915520 10601428418560 3559015520 99999999 3550015520 1112115 - 155136
process runtime diskCacheUsed 2978 1352973 4029153680 1769904 262208 1769904 1112115 - 155136
process.runtime maxMemory 2978 3817865216 1369602613248 3817865216 99999999 3817865216 1112015 - 155136
process runiime totalMemory 2078 126219784 375882514432 137363456 69730304 137363456 111215 - 155136

® Hook Values

S
Orient
>

Servers Management

Server > Status: ONLINE > Javaversion: 18.0 05 > Java vendor: Oracle Corporation
= > Profier Status: > Os name: Mac 0S X > Num.CPU: 4
ocal > Address: 192.168.1.128 [2424,2480] > Os arch: x86 64 > Agent Version : 2.2
OVERVIEW CONNECTIONS METRICS DATABASES WARNINGS LoGs PLUGINS GLOBAL CONFIGURATION ~ SERVER CONFIGURATION
Q
Name Value
= 0
ss. 263067
s o
work channel binary. flushes o
tetwork channel binary.receivedBytes 1203083
etwork. channel binary.transmittedBytes 4670
sever.connections actives 1
system.config.agentVersion 22
system config cpus 4
system.config.java.vendor Oracle Corporation
system.config java.version 18005
system.config.os.arch x86_64
system.config.os.name Mac 05 X
system.config os.version 10105
system databases GratefulDeadConcerts mario
systemdisk . freeSpace 7328575488

Databases

It lists all databases created on the server. It is possible make a backup using the specific option.

& Servers Management

Servers Management

Server > Status: ONLINE > Java version: 1.8.0_05 > Java vendor: Oracle Corporation
> Profiler Status > s name: Mac OS X > Num.CPU: 4
local1 M > Address: 102.168.1.128 [2424,2480] > Os arch: x86_64 > Agent Version : 2.2
OVERVIEW CONNECTIONS METRICS DATABASES WARNINGS Locs PLUGINS CONFIGURATION
Database Backup
OpenBeer o

Warnings

It list all warning messages. For each you can see:

® warning , as the warning message

e cCount , as the number of that warnings

e Last Time , as the timestamp of the last warning message

&k Servers Management

Servers Management

server > Status: ONLINE > Javaversion: 18.0_05 > Java vendor: Oracle Corporation
> Profiler Status; > Osname: Mac 0S X > Num.CPU: 4
local1 M > Address: 182.168.1.128 [2424,2480] > Osarch: x86_64. > Agent Version : 2.2
OVERVIEW CONNECTIONS METRICS DATABASES WARNINGS LoGs PLUGINS CONFIGURATION
Warning Count Last Time

Logs

This panel shows all the logs present on the server. The information in each log row are presented divided as follows:

® Day

® Hour
® Type
® File

e Info

Moreover you can filter log messages through the specific panel, typing different parameters.

S
(e
s

Servers Management

Server > Status: ONLINE > Javaversion: 18.0 05 > Java vendor: Oracle Corporation
e > Profiler Status: > Os name: Mac 0S X > Num.CPU:4
otal > Address: 192.168.1.128 [2424,2480] > Os arch: x86_64 > Agent Version: 22
OVERVIEW CONNECTIONS METRICS DATABASES WARNINGS Locs PLUGINS CONFIGURATION
Searchin:| LAST v Type s L SEARCH
From To
=] L2 @]
Day Hour Type File Info
2015 13:32:51:357 INFO orient- OrientD8 auto-config DI = =3,641MB 0= =
1116 serverlog 0
2015 13:3251:540 INFO orient- Loading configuration from: . derXenl]
1116 serverlog 0
2015 13:32:51:949 INFO orient- OrientDB Server v2.2.0-SNAPSHOT is starting up... [0Server]
1116 serverlog 0
2015 13:32:51:960 INFO orient- " A [oServer]
1116 serverlog 0
2015 13:32:52:046 INFO orient- Listening binary connections on 0.0.0.0:2424 {protocol v.33, socket=defaut) [OServerNetworkListener]
1116 server.log 0
2015 13:32:52:052 INFO orient- Listening htip connections on 0. V.10, istener]
1116 serverlog 0
2015 13:32:52:060 INFO orient- Installing dynamic plugin ‘studio-2.1.Zip'... [0ServerPluginManager]
1116 server.log.0
2015 13:32:52:194 WARNI orient- GREMLIN language not availabe (ot in classpath) [OGreminHelper]
1116 serverlog 0
2018 13:32:52:428 INFO orient- Configuring Hazelcast from i mr gl
1116 serverlog 0
2015 13:32:52:536 WARNI orient- Name of the hazelcast schema location incorrect using iper]
116 server.log.0
2015 13:32:52:931 INFO orient- [LOCAL) [orientdl] [35.2] Prefer IPv4 stack i true. [DefaultAddressPicker]
1116 serverlog 0
2015 13:32:52:046 INFO orient- [LOCAL] forientdl] [35.2] Picked Address{192.168.1.1281:2434, using socket ServerSocket{addr=/0:0:0:0:0:0:0:0 Jocalport=2434], bind any local is true [DefauttAddressPicker]
1116 serverlog.0

Plugins

It helps you with the configuration of a new plugin, avoiding to edit the config/orientdb-server-config.xml configuration file.

&% Servers Management

Servers Management

Server > Status: ONLINE > Java version: 1.8.0_05 > Java vendor: Oracle Corporation
> Profiler Status; > Os name: Mac 0S X > Num.CPU: 4
local1 M > Address: 192.168.1.128 [2424,2480] > Os arch: x86_64 > Agent Version : 2.2

OVERVIEW CONNECTIONS METRICS DATABASES WARNINGS LoGs PLUGINS CONFIGURATION

defautt v EJEH ©

User sample.user@gmail.com

Password

Host smtp.gmail.com
port 587
Start TisEnable ¥
Auth ¥
Date Format MM-dd HH:mm

asw: conric | i sAvE conr

Configuration

You can consult in read-only mode the configuration of the server contained in the config/orientdb-server-config.xml file.

<& Servers Manag

Servers Management

Server > Status: ONLINE > Java version: 1.8.0_05 > Java vendor: Oracle Corporation
> Profiler Status: > Os name: Mac OS X > Num.CPU: 4
locall M > Address: 102.168.1.128 [2424,2480] > Osarch: x86_64 > Agent Version: 2.2

OVERVIEW CONNECTIONS METRICS. DATABASES WARNINGS LoGs PLUGINS CONFIGURATION

1 <7xml versio

1.6" encoding="UTF-8" standalone

yes" 7>

en
nane="graph punl naxt />

om.orientechnologies. orient .server.hazelcast. OHazelcastPlugin'>

ocall” nam

"true’ name="enable

{ORTENTDB HOME}/config/defaylt-distributed-db-config. json" name="configuration.db.default"/>
{ORTENTDB_HOME]} / config/hazelcast.xnl" name="configuration.hazelcast”/>

ientachnologies.orient.server.dist ributed. conflict ODefaul tReplicationConflictResolver”

'Con . orientachnologies orient. servar. hazelcast . sharding. siracegy. ORoundRobinPa rt1tioninct rateay" nan

nodeane" />

onflict.resolver.impl
SRarding seratedy. caund - robin® />

t.directory”/
{DBNAME% 'i{DATE yyyyMMddHHmmss) json” name:
nc

R

arget. fileName"/>

om.orientechnologies. orient .server.plugin.mail.OMailPlugin®>

"true" enabled"/
gcathost” nan Srofile default mau _sntphost'/>
"profile.default.nail.s
oot Lie.detult moil shib quth
ofile default nail sntp starttls enable"/>
5

“password/
e aefautt. nail .date. fornat®/>

om. orientechnologies. agent.OEnterpriseAgent>

<parameters>
arameter value="nyrsWbMLp+BCRLUBCWLZDGNATMPAZSS" name="license"/>
</paraneters> -

Cluster Management

This is the section (available only for the Enterprise Edition) to work with OrientDB Cluster as DBA/DevOps.

NOTE: This feature is available only in the OrientDB Enterprise Edition. If you are interested in a commercial license look at OrientDB

Subscription Packages.

On the top of the page are reported the number of active nodes joining y our cluster.

Overview

This page summarizes all the most important information about all servers connected to the cluster:

® CPU, RAM, DISK CACHE and DISK used
® Status

® Operations per second

® Active Connections

® Network Requests

® Average Latency

® Warnings

e Live chart with CRUD operations in real-time

& Servers Management

Cluster Management

Active nodes: 1

OVERVIEW DATABASES

Cluster Health Cluster CRUD Operations

0.0% —_ 30% 0.0% 97.0%

cu C R © DISKCACHE : bisk

11281 MB 12.56 GB 1200248 12.13 GB
Status: ONLINE opsisec: 0
Active Connections: 0 Network Requests: 2 Ginro e -
Average Latency: 0 Warnings:
MCreale MRead M Update M Delete

In this panel you can see all databases present on each server joining y our cluster. Through the box above you can change in real time the
current cluster configuration, without touching the config/default-distributed-db-config.json file content. You can set the following

parameters:

® Write Quorum

® Read Quorum

® Auto Deploy

® Hot Alignment

® Read your Writes

® Failure Available Nodes Less Quorum

® Server Roles , roles may be "Master" or "Replica"

To learn more about these configuration parameters please visit the Distributed Configuration section.

http://orientdb.com/orientdb-enterprise
http://orientdb.com/support

Cluster Management

Active nodes: 1

Configuration
write Quarum

Read Quorum

Server Roles

beer_ocaiz

brewery localz

hasirewery_locaiz
nascategory_localz

hasstyle_

inemal
oluncion localz
ors Jocaiz
aole_localz
oschecie_locatz

ouser_focalz

Ao Depioy
tiot Abgnmens
@ Read Your Wries
Faiure Avaiabie Nodes Less Quorum
Server Role

master

Available Databases

o ¢fefelele]efe

<efefefe

Data Centers

Data Centers

This is the section (available only for the Enterprise Edition) to work with OrientDB Server as DBA/DevOps.

Overview

Cluster Management e

Overview Data Centers Databases Clg

Database | MovieRatings s Data Centers n Online Servers a
M node M node2 M nodel

Synchronizing Servers [

Offline Servers [}

316

Query Profiler

Starting from version 2.2, Studio Enterprise Edition includes a functionality called Profiling. To understand how Profiling works, please

refer to the Profiler page.
In the above section you can choose the server in order to investigate queries executed on it and manage the local cache.

NOTE: This feature is available only in the OrientDB Enterprise Edition. If you are interested in a commercial license look at OrientDB

Subscription Packages.

Query

This panel shows all the queries executed on a specific server grouped by the command content. For each query the following

information are reported:

e Type , as the query type

e Command , as the content of the query

e Users , as the users who executed the query

e Entries , as the number of times the query it was executed
® Average , as the average required time by the queries

e Total , as the total required time by all the queries

® Max , as the maximum required time

e Min , as the minimum required time

e Last , as the time required by the last query

e Last execution , as the timestamp of the last query execution

Yorient =
rien Servers Management
7% gement

Query Profiler

Server locall v Database GraefulDeadConcerts v

QuERY COMMAND CACHE

[| o

Type Command Users Entries Average Total Max Min Last Last Execution
sal select* from _studio where type = ‘Bookmark order by name Fadmint B 2 1 5 1 2 11/12/15 - 14:33:00
sal Select * from _studio where user.name = ‘admin’ and type = ‘GraphConfig| Fadmint 3 4 12 9 1 1 11/12/15 - 14:33:00
sal select from QUser where name =2 imit 1 [u 3 3 2 0 1 11/12/15 - 14:33:00

sal select user.name a5 semame.* from AuditingLog order by date desc limit 100 [2 269 538 4z 12 112 1112115 - 14:33:09

Command Cache

Through this panel you can manage the cache of the specific server and consult the cached results of queries by using the VviEw RESULTS

button. You can even filter the queries by the "Query" field and purge the whole cache by using the PURGE CACHE button.

http://orientdb.com/orientdb-enterprise
http://orientdb.com/support

Query Profiler

server| lggal) v |Database | GratefulDeadConcerts

@ Enabied

Cache win exscution time

1

query

select rom v i1

select from v

@rd gversion @class nam

w1 s v HeY 0
oiooLEY
w3 ws v NOTFADE
AWRY
THE ROAD
FEELNG 24D
#a7 Bo_Dicdey
s o v Spencer_Davis

song type

Query

COMMAND CACHE

Cachesie 2 EEE=]

Cached Result wax size Eviet swateay

1000 PER_CLUSTER

Resuits size
a9

Cached query results

performances type out fallowed by

song e

ViEw RESULTS

PRTSI——

Auditing
Studio 2.2 Enterprise Edition includes a functionality called Auditing. To understand how Auditing works, please read the Auditing page
on the OrientDB M anual.

NOTE: This feature is available only in the OrientDB Enterprise Edition. If you are interested in a commercial license look at OrientDB

Subscription Packages.

By default all the auditing logs are saved as documents of class oAuditingLog in the internal database osystem . If your account has
enough privileges, you can directly query the auditing log. Example on retrieving last 20 logs: select from OAuditingLog order by @rid
desc limit 20 .

However, Studio provides a panel to filter the Auditing Log messages on a specific server without using SQL.

& SERVERS MANAGEMENT

.
<Orient

Security Global Setiings

Server orientdb 4 Enabled € Debug

Auditing Authentication LDAP Importer Misc

n Auditing Log Auditing Configuration

Auditing Filters @

User Operation Database Record
Date from Note Date To Limit
i} Q i} (0] 100
#CLEAR QUSEARCH
User Date Operation Database Record Note Changes
10/11/16 - 130809 Securty Module The security module is now loaded
911116 - 20:12:03 Securty Module The security module is now loaded
811/16-10:27:34 Securty Module The security module is now loaded

7116 - 17:57:12 Security Module ‘The security module is now loaded
411116 - 1153557 Security Module The security module is now loaded
4/11/16 - 1152557 Security Module The security module is now loaded
3/11/16 - 17:13:48 Security Module The security module is now loaded

Studio Auditing panel helps you also on Auditing configuration of servers, avoiding to edit the auditing-config.json file under the

database folder.

3
<Orient & SERVERS MANAGEMENT

Auditing Log Auditing Configuration
BISAVE
Global Settings @

Enabled

Node Join Node ${node} has joined.

n Node Left Node ${node} has left.

Database ORemotelmportTest 4
Schema Auditing Command Auditing © ADD COMMAND
Create Class Regex Message
y,
Drop Class

Class Auditing ©ADD CLASS

Class Create Read Update Delete Polymorphic

a

Track Changes

https://github.com/orientechnologies/orientdb-docs/blob/master/Auditing.md
http://orientdb.com/docs/last/index.html
http://orientdb.com/orientdb-enterprise
http://orientdb.com/support

Backup Management (Enterprise Only)

Studio 2.2 Enterprise Edition includes a Backup Manager that allows you to schedule and perform your backups and easily execute
and manage restores you may need. You can enjoy this new functionality by reaching the Backup Management panel in the Server

M anagement area, this is what you will find:

& SERVERS MANAGEMENT

PLS
Orient
>

Backup Management

Database GratefulDeadConcerts v
— @ Backup Finished @ Restore Finished O Backup Scheduled © Backup Started O Restore Started @ Backup Error O Restore Error
ettings
< > | today May 2016 month | week day
Database GratefulDeadConcerts
sun Mon Tue Wed Thu Fri sat
1 2 3 a 5 6 7
BackupID 23b13c9-951a-4105-8072-84a0e28%bcde
Enabled
Directory
8 9 10 1 12 13 1
Retention days 1
Mode Incremental Backup
15 16 17 18 19 20 2
Incremental Backup Every [minute
SAVE
2 23 2 25 2 27 2

How you can see the panel is divided into two sections, on the left side you can schedule your backups, on the right side there is the

calendar where you can check:

o the executed tasks (backup or restore)
e the scheduled backups

e eventual errors raised during the execution of a task

Now let's start seeing how you can schedule your backups.

Backup scheduling

On the left you can find all the settings for your backup scheduling,

Backup Management

Database GratefulDeadConcerts v
Settings
Database GratefulDeadConcerts

Backup ID 23b13fc9-951a-41d5-8d72-84a0e289bcde

Enabled
Directory Directory
Retention days 1
Mode Incremental Backup v
Incremental Backup Every | minute ¥
SAVE

As first thing choose the database that you want backup. In the example above we have chosen the GratefulDeadConcerts database.
Then you must specify the output directory where you want to save your backups and the retention days of your backups. Now you

must select the backup mode you want to use:

e Full backup
e Incremental Backup

e Full + Incremental Backup
These modes will be analysed afterwards.

Once you have chosen the desired backup mode, you have to choose the backup period that indicates the time you want to wait
between each backup and the next one. Eventually you must flag the Enabled checkbox and click on the Save button in order to start

the scheduling of the backups according to your settings.

Below we will examine briefly the three different backup strategies.

Full backup

Through this mode when each period passes a full backup will be performed in the path you specified in the settings just discussed. If

you want know more about the full backup you can refer to the Full Backup page.

Backup Management

Database GratefulDeadConcerts ¥
Settings
Database GratefulDeadConcerts

Backup ID 23b13fc9-951a-41d5-8d72-84a0e289bcde

Enabled ¥
Directory ftmp/backup/full
Retention days 7
Mode Full Backup 1

Full Backup Every |5 Minutes ¥ |

SAVE

With the settings shown above a full backup will be performed every 5 minutes. Thus in our example after 5 minutes we will have the

first backup, after 10 minutes the second one and so on.

/tmp/backup/full

|
GratefulDeadConcerts-1465213003035

| GratefulDeadConcerts_2016-06-06-13-36-43_0_full.ibu

| GratefulDeadConcerts_2016-06-06-13-37-00_0_full.ibu

GratefulDeadConcerts-1465213080003

I

I

I

| GratefulDeadConcerts-1465213020008

I

|

|

| | GratefulDeadConcerts_2016-06-06-13-38-00_0_full.ibu

Incremental Backup

If you prefer to execute an incremental backup you can select this mode. As declared in the Incremental Backup page the incremental
backup generates smaller backup files by storing only the delta between two versions of the database. Let's suppose we want execute a
backup every 5 minutes: a first full backup will be performed, then it will be followed by a new incremental backup, containing only

the delta, every 5 minutes.

Backup Management

Database GratefulDeadConcerts v

Settings

Database

Backup ID

Enabled

Directory

Retention days

Mode

Incremental Backup

/tmp/backup/incremental
I

GratefulDeadConcerts

23b13§c9-951a-41d5-8d72-84a0e289bcde

ftmp/backup/incremental

Incremental Backup v

every (5 Minutes v

SAVE

| GratefulDeadConcerts-incremental

GratefulDeadConcerts_2016-06-06-13-27-00_0_full.ibu
GratefulDeadConcerts_2016-06-06-13-28-00_1.1ibu
GratefulDeadConcerts_2016-06-06-13-29-00_2.1ibu
GratefulDeadConcerts_2016-06-06-13-30-00_3.1ibu
GratefulDeadConcerts_2016-06-06-13-31-00_4.1ibu

Full + Incremental Backup

This mode follows an hybrid approach between the first two strategies, combining them according to your criteria. The first significant

thing you can notice is that you must specify two different backup-periods:

e Full Backup period: it specifies how much time will be waited between two sequential full backups.

e Incremental Backup period: it specifies how much time will be waited between two sequential incremental backups.

Let's analyse in which way the two modes are combined. Suppose we decided to execute the full backup every 5 minutes and the

incremental backup every minute as shown in the example below.

Backup Management

Database GratefulDeadConcerts v
Settings
Database GratefulDeadConcerts

Backup ID 23b13fc8-951a-41d5-8d72-84a0e289bcde

Enabled ¥
Directory ftmp/backup/full-incremental
Retention days T
Mode Full + Incremental Backup T

Full Backup Every|5 Minutes ¥ |

Incremental Backup Every | minute !

SAVE

Thus we will obtain that every 5 minutes a new directory with a full backup will be added in the specified path, then in the
following 4 minutes only incremental backups will be performed. As we set 1 minute for the incremental backup, we will have 4
incremental backups after the first full backup. After 5 minutes a new full backup in another folder will be performed, and the following
incrementals will be executed according to the delta relative to this second full backup and they will put in this second folder. That's all,
after another 5 minutes we will have a third directory with an initial full backup that will be followed by 4 incremental backups, and so

on.

/tmp/backup/full-incremental

GratefulDeadConcerts-1465213200182

| GratefulDeadConcerts_2016-06-06-13-40-00_0_full.ibu
GratefulDeadConcerts_2016-06-06-13-41-00_1.1ibu
GratefulDeadConcerts_2016-06-06-13-42-00_2.1bu
GratefulDeadConcerts_2016-06-06-13-44-00_3.1bu
GratefulDeadConcerts_2016-06-06-13-44-00_4.1bu

|
|
|
|
|
|
|
| GratefulDeadConcerts-1465213440019

| | GratefulDeadConcerts_2016-06-06-13-45-00_0_full.ibu
| GratefulDeadConcerts_2016-06-06-13-46-00_1.1ibu

| GratefulDeadConcerts_2016-06-06-13-47-00_2.1bu

| GratefulDeadConcerts_2016-06-06-13-48-00_3.1ibu

| GratefulDeadConcerts_2016-06-06-13-49-00_4.1ibu

|

|

|

|

GratefulDeadConcerts-1467210084991
| GratefulDeadConcerts_2016-06-06-13-46-00_0_full.ibu

In this way we can have a "checkpoint" for each different directory to use in order to restore the database to a specific moment. You can
decide if delete or maintain old backups and for each of them you can exploit the incremental backup features at the same time. To
achieve this goal and use this feature properly mind that full backup period must be major than incremental backup period,

different settings may cause illogical behaviours.

Granularity

You can have different granularities to schedule your backups. Besides minutes granularity you can choose hour, day, week, month,

and year granularity.

Database GratefulDeadConcerts v Database GratefulDeadConcerts v
Settings Settings
Database GratefulDeadConcerts Database GratefulDeadConcerts
BackupID 2618h764-Cf56-493a-8801-fde51n5ada60 Backup ID 2680764-cf56-493a-880f-fde51h5ada60
Enabled ¥ Enabled ¥
Directory Jtmp/backup Directory fimp/backup
Retention days 7 Retention days 7
Mode Full Backup v Mode Full Backup v
Full Backup Every [hour * | at[00 ¥ | minutes past the hour Full Backup Every[day v]at[o4 v {00 ¥
SAVE SAVE
Database GratefulDeadConcerts v Database GratefulDeadConcerts v
Setiings Settings
Database GratefulDeadConcerts Database GratefulDeadConcerts
Backup ID 26f8b764-cf56-493a-880f-fde51b5adas0 Backup ID 26f8b764-cf56-493a-880f-fdeS1h5adas0
Enablea ¥ Enabled ¢
Directory Jtmp/backup Directory Itmp/backup
Retention days 7 Retention days 7
Mode Full Backup v Mode Full Backup v
Full Backup Every on[Sunday v |at[o4 v]{oo] Full Backup Every onthe[1st v]at[04 v|{oo v]
SAVE SAVE
Database GratefulDeadConcerts v
Settings

Database GratefulDeadConcerts

Backup ID 2618b764-cf56-493a-8801-fde51b5adas0

Enabled ¢
Directory Jtmp/backup
Retention days T
Mode Full Backup v

FullBackup Every[year v|onthe[ist v|of[January v |at[04 v |[oo v

SAVE

Restore

In the calendar you can visualize and filter all the tasks (with the eventual related errors) through the voices below:

e Backup Finished

Studio Backup M anagement

e Restore Finished
e Backup Scheduled
e Backup Started

e Restore Started

e Backup Error

o Restore Error

Backup Management

Database GratefulDeadConcerts A
Setti @ Backup Finished @ Restore Finished C Backup Scheduled O Backup Started Restore Started @ Backup Emor O Restore Error
etings
il (057 Jun 5—11, 2016 ot [day
Database GratefulDeadConcerts
Sun 6/5 Mon 6/6 Tue 6/7 ‘Wed 6/8 Thu 619 Fri 6/10 Sat 6/11
Backup ID 8b0a7bd2-2392-4cf9-b3fd-3698ad4b3510 all-day
. lam -
Enabled
2am gry 207 2:10 Incremental backup
Directory fmpibackupfull-incremental I backup executed Ful backup executed Full ackup executed executed
3am
Retention days ¥
dam
Mode Full + Incremental Backup v sam - 1 ‘ f |
|
\ | ‘ ‘ |
FulBackup Every eam ‘ | } ; }
7am A —
Incremental Backup Every = = Full backup executed
fead Incremental backup Incremental backup
[y reremental backup s executed
SAVE
9am
10am 00 — 1006 1011 e
i bacan R — i e
backup executed backup
1lam = e
12pm

Notice you can choose three different scopes: month, week and day.

Clicking on a backup you can examine additional info like execution time and timestamp, directory path, file name and file size.
Moreover you can remove the backup or carry out a restore starting from it.

Use this way to delete your backups because removing them manually may generates unexpected behaviours.

Backup Event

» Info: Incremental backup executed at 6/6/16 - 13:28

» Path: ftmp/backup/incremental/GratefulDeadConcerts-incremental
* Filename: GratefulDeadConcerts_2016-06-06-13-28-00_1.ibu

* File size: 6 Kb

* Execution time: 18

CLOSE RESTORE DATABASE REMOVE BACKUP

Let's make a restore by clicking on the button "Restore Database". A new window will be opened. Here you must select the database
where you want restore the backup: notice you must declare just a name and a new empty database will be automatically created by

the restore procedure, don't use:

e an existent not-empty database

e fresh manually-built database

Below are reported all the files involved in the restore procedure: the number of files used to restore y our database depends on the

backup mode you chose for the selected backup task.

If the backup belongs to a Full Backup schedule, just a file will be involved for each restore procedure.

326

Studio Backup M anagement

Restore Backup to nhewdb

Database name ‘ newdb

The selected backup is part of an incremental backup. Below are the files (1) involved . The restore will use all the files stored in
ltmpi/backuplfull/GratefulDeadConceris-1465213140003 to restore the database.

Mode When File Name File Size

FULL_BACKUP 6/6/16 - 13:39 GratefulDeadConcents_2016-06- 239.99 KB
06-13-39-00_0_fullibu

If the backup belongs to an Incremental Backup schedule, doesn't matter which file is selected, all the files in the directory will be

processed during the restore.

Restore Backup to newdb

Database name ‘ newdb

The selected backup is part of an incremental backup. Below are the files (5) involved . The restore will use all the files stored in
Itmp/backupl/incremental/GratefulDeadConcerts-incremental to restore the database.

Mode When File Name File Size

INCREMENTAL_BACKUP 6/6/16 - 13:31 GratefulDeadConcerts_2016-06- 5.9 KB
06-13-31-00_4.ibu

INCREMENTAL_BACKUP 6/6/16 - 13:30 GratefulDeadConcerts_2016-06- 5.9 KB
06-13-30-00_3.ibu

INCREMENTAL_BACKUP 6/6/16 - 13:29 GratefulDeadConcerts_2016-06- 59 KB
06-13-29-00_2.ibu

INCREMENTAL_BACKUP 6/6/16 - 13:28 GratefulDeadConcerts_2016-06- 59 KB
06-13-28-00_1.ibu

INCREMENTAL BACKUP 6/6/16 - 13:27 GratefulDeadConceris_2016-06- 239.98 KB
06-13-27-00_0_fullibu

3

4]

CANCEL RESTORE

If you chose a backup belonging to a Full + Incremental Backup schedule, then will be evaluated all the files contained in the folder

which contains the backup file you selected from the calendar.

327

Studio Backup M anagement

Restore Backup to newdb

Database name ‘ newdb

The selected backup is part of an incremental backup. Below are the files (5) involved . The restore will use all the files stored in
Itmpibackupl/full-incremental/GratefulDeadConcerts-1465213440019 to restore the database.

Mode

INCREMENTAL_BACKUP

INCREMENTAL_BACKUP

INCREMENTAL_BACKUP

INCREMENTAL_BACKUP

FULL_BACKUP

When

6/6/16 - 13:49

6/6/16 - 13:48

6/6/16 - 13:47

6/6/16 - 13:46

6/6/16 - 13:45

File Name

GratefulDeadConcerts_2016-06-
06-13-49-00_4.ibu

GratefulDeadConcerts_2016-06-
06-13-48-00_3.ibu

GratefulDeadConcerts_2016-06-
06-13-47-00_2.ibu

GratefulDeadConcerts_2016-06-
06-13-46-00_1.ibu

GratefulDeadConcerts_2016-06-
06-13-45-00_0_full.ibu

File Size

5.9 KB

5.9 KB

5.9 KB

5.9 KB

239.99 KB

CANCEL

3

4

RESTORE

328

Teleporter

In Studio 2.2 you can configure the execution of the new Teleporter plugin, which allows you to import your relational database into
OrientDB in few simple steps. If you are interested in a detailed description of the tool, of its inner workings and features you can view

the Teleporter Documentation.

NOTE: This feature is available both for the OrientDB Enterprise Edition and the OrientDB Community Edition. But beware: in
Community Edition you can migrate your source relational database but you cannot enjoy the synchronize feature, only available
in the Enterprise Edition.

This visual tool consists in a wizard composed of 4 steps, where just Step 1 and Step 2 are strictly necessary in order to perform your

migration. Let's have a look at each configuration step.

Step 1
In the first step you have to type the following required parameters:

e Database Driver , as the driver name of the DBM S from which you want to execute the import. You have to choose among;
o Oracle
o SQLServer
o Mysql
o PostgreSQL
o HyperSQL
e Database Host , as the host where your DBM S instance is running on
e Port , as the port where your DBMS is listening on
® Database Name , as the name of the source database
e User Name , as the username to access the source database (it may be blank)

e Password , as the password to access the source database (it may be blank)

After you typed all the required parameters for the migration you can test the connection.
Teleporter

Step 1: Source Database connection m TEST CONNECTION

Database Driver PostgreSQL ¢ n
Database Host localhost n
Port 5432 n

Database Name dvdrental
User Name postgres
Password | eeeeeeen

Connection is alive

Step 2
In the second step you have to specify all the parameters about the OrientDB target database:

® Connection protocol , as the protocol adopted to write in OrientDB. You have to choose among:
o plocal
o memory

® OrientDB Database Name , as the name of the target database in OrientDB

e Strategy , as the strategy adopted during the migration (M ore about strategies)

® Name Resolver , as the basic name resolver to adopt during names' resolution

http://orientdb.com/orientdb-enterprise
http://orientdb.com/download/
https://orientdb.com/docs/last/Teleporter-Home.html

e Inheritance descriptor , as the XML file's path. In this descriptor you can report all the info describing inheritance relationships

present between the tables in the source database
e Log Level , as the loglevel adopted by Teleporter during the migration. You can choose among:
o NO
o DEBUG
o INFO
o WARNING
o ERROR

Teleporter

Step 2: Target OrientDB Database

Connection Protocol plocal s
OrientDB Database Name targetdb n
Strategy naive s n

Name Resolver original i n
Inheritance descriptor XML Path n
LogLevel INFO ¢ n

Once we have collected all the minimal info needed for the migration, you can run your configured job through the START MIGRATION
button, then the job progress monitor will be displayed:

Teleporter

Migration to OrientDB

NEW MIGRATION
Status: RUNNING

From: jdbc:postgresql:/localhost:5432/dvdrental
To: plocal:30ORIENTDB_HOME/databases/targetdb

(1/4) Source DB Schema building: 0% [] Elapsed: 00:00:00 Remaining: 00:00:00 Warnings: 0
(1/4) Source DB Schema building: 100% [..........cccuue...] Elapsed: 00:00:00 Remaining: 00:00:00 Warnings: 0
(2/4) Graph Model building: 100% [....................] Elapsed: 00:00:00 Remaining: 00:00:00 Warnings: 5
(3/4) OrientDB Schema writing: 13%[..] Elapsed: 00:00:00 Remaining: 00:00:03 Warnings: 5
(3/4) OrientDB Schema writing: 70%[..............] Elapsed: 00:00:01 Remaining: 00:00:00 Warnings: 5

(3/4) OrientDB Schema writing: 83% [..
(3/4) OrientDB Schema writing: ~ 100% [..

] Elapsed: 00:00:02 Remaining: 00:00:00 Warnings: 5
...] Elapsed: 00:00:03 Remaining: 00:00:00 Warnings: 5

(4/4) OrientDB importing: 0% [] Elapsed: 00:00:00 Remaining: 00:00:00 Warnings: 5 Records: 325/44820

(4/4) OrientDB importing: 2% [] Elapsed: 00:00:01 Remaining: Of 58 Warnings: 5 Records: 956/44820

(4/4) OrientDB importing: 4% [] Elapsed: 00:00:02 Remaining: Of 52 Warnings: 5 Records: 2080/44820
(4/4) OrientDB importing: 7% [.] Elapsed: 00:00:03 Remaining: 00:00:42 Warnings: 5 Records: 3403/44820
(4/4) OrientDB importing: 1% [..] Elapsed: 00:00:04 Remaining: 00:00:33 Warnings: 5 Records: 4974/44820
(4/4) OrientDB importing: 13% [..] Elapsed: 00:00:05 Remaining: 00:00:34 Warnings: 5 Records: 6221/44820
(4/4) OrientDB importing: 17%[...] Elapsed: 00:00:06 Remaining: 00:00:30 Warnings: 5 Records: 7744/44820
(4/4) OrientDB importing: 20% [....] Elapsed: 00:00:07 Remaining: 00:00:28 Warnings: 5 Records: 9398/44820

At the end of the migration, statistics and warnings about the process are reported as shown below:

Teleporter
Teleporter

Migration to OrientDB

NEW MIGRATION
Status: FINISHED _

From: jdbc:postgresql:/localhost:5432/dvdrental
To: plocal:30RIENTDB_HOME/databases/targetdb

Importing complete in 00:00:35

SUMMARY

Source DB Schema
Entities: 15
Relationships: 18

OrientDB Schema

Vertex Type: 15

Edge Type: 12

Indexes: 15

OrientDB Importing

Analyzed Records: 44820/44820
Added Vertices on OrientDB: 44820

Updated Vertices on OrientDB: 0
Added Edges on OrientDB: 112233

Otherwise you can go on in your migrationg customisation jumping to the next step.

Step 3

Here you can exploit Teleporter's filtering features: in the panel on the left all the tables present in the source database are reported. If
you want migrate just a subset of these tables, you just have to select and move them in the right panel through the specific buttons

(you can also drag-and-drop the selected items).
Teleporter

Step 3: Filters (Advanced) R ———

Source DB Tables Included Tables

actor
address

category

city INCLUDE »
country 4 EXCLUDE

customer
film

film_actor

w

w

Teleporter

Teleporter

Step 3: Filters (Advanced)

Source DB Tables

address
category
customer
film_category
inventory
language
payment

rental

SELECT ALL

PREV NEXT (ADVANCED)

INCLUDE »
4 EXCLUDE

UNSELECT ALL

SELECT ALL

Included Tables

actor
city
country
film

film_actor

UNSELECT ALL

You can perform the same operations also in the opposite direction, that is excluding some tables during the migration just moving them

from the right panel to the left one.

If the right panel is empty, no filters will be applied. Instead, if the right panel is not empty, just the selected tables in the right panel

will be imported while all the others will be filtered out. Thus, for example, these two configurations are equivalent:

Teleporter

Step 3: Filters (Advanced)

Source DB Tables

SELECT ALL

PREV NEXT (ADVANCED)

INCLUDE »
4 EXCLUDE

UNSELECT ALL

SELECT ALL

Included Tables

actor
address
category
city
country
customer
film

film_actor

UNSELECT ALL

332

Teleporter

Step 3: Filters (Advanced) B

Source DB Tables Included Tables

actor
address

category

customer
film

film_actor

SELECT ALL UNSELECT ALL SELECT ALL UNSELECT ALL

Here too you can start your migration or go to the 4th and last configuration step.

Step 4

In the last step Teleporter will provide you a Graph M odel coming from the translation of the ER-M odel inferred from the source
database schema. The correspondent Graph Model is built according to basic mapping rules and your choices as well (filters applied,

chosen strategy, name resolver adopted etc.). This step has two aims:

e it gives you an idea of how your source database will appear once imported in OrientDB

e it allows you to edit the graph model

Teleporter

Step 4: Model Mapping (Advanced) STAR

Search | Insert Class or Table name v ACTIONS ~ Details

inventory

has_inventory

language

fim_actor | fim

category
has_category

country

You can see two panels, the Graph M odel Panel on the left, containing the Graph M odel built from Teleporter, and the Details Panel on
the right, reporting all the details about the current selected element in the left panel.

The Details Panel is divided into two sections:

1. in the top area you can enjoy a graph perspective of the element selected in the Graph Panel: you can inspect info about the
OrientDB schema, like class name and properties.
2. in the bottom area you have a source-schema perspective, where you got the source-schema items the information above comes

from.

This step is conceived to make very easy the graph model editing and to change the mapping with the source database schema. In fact

you can modify the basic mapping

e Renaming classes (both for Vertex and Edge classes)

Excluding/re-including a property mapped with a column in the correspondent source table

Adding new properties

e Dropping existent properties

Editing properties

Adding new Edge classes and/or instances

e Inspecting original schema data, both for tables and relationships

Let's have a deeper look at each of these operations.

Inspecting Classes and source correspondent elements
Via the Details Panel you can inspect information about:

1. Vertex class

If you select a Vertex Class, you can inspect the correspondence between each column in the source table and the correspondent
property in the translated Vertex class. Columns and properties are strongly bound: you can exclude, include or rename a property, but

the bindings with the correspondent column will remain.

Teleporter

Step 4: Model Mapping (Advanced) m

Search | Insert Class o

Vertex Class: film_actor EDIT CLASS v
inventory
Ll Property name Property type Actions
anguage actor_id SHORT EDIT | @ DROP
film_id SHORT EDIT | @ DROP
last_update DATETIME EDIT | @ DROP
category Table: film_actor
has_category
custgme;
Column name Column type Include
actor_id int2
film_id int2
last_update timestamp

1. Edge Class

Everytime you select an edge in the graph, you can find out about the original relationship it comes from in the bottom section in the

Details Panel. We can have 2 kinds of relationships, and coherently 2 kinds of edge rendering,

e 1-N Relationship

Edges coming from 1-N Relationships are represented through a continous arrow.

Teleporter

Teleporter

Step 4: Model Mapping (Advanced)

Search ‘ Insert Class or Table name "2 ACTIONS ~ Details

Edge Class: has_film
(© Vertex Class
— Edge Class from Property name Property type Actions

1-N Relationship
- - - Edge Class from
N-N Relationship rental

language

category
1-N Relationship

inventory film

has_country

The rendered Relationship involves just two tables of course, the starting table (aka foreign table) and the arrival table (aka parent

table). Clicking the question mark you can also see for each table all the columns involved in the relationship.

Details

Edge Class: has_film EDIT CLASS ~

Property name Property type Actions

1-N Relationship

inventory film
e
FromColumns ToColumns
o film_id e film_id

o N-N Relationship

Ul

Let's suppose you have got the following graph, obtained p erforming join tables aggregation through the naive-aggregate strategy.

Teleporter

Step 4: Model Mapping (Advanced)

Search | Insert Class or Table name v ACTIONS ~ Details

© Vertex Class
— Edge Class from
1-N Relationship
- - - Edge Class from
N-N Relationship rental

language

category

oy country

: has_country O

Edges coming from N-N Relationships are represented through a dashed arrow and in the bottom you can see the 2 relationships

involving two external tables and the join table between them.

Teleporter

Step 4: Model Mapping (Advanced)

Search | Insert Class or Table name v ACTIONS ~ Details

Edge Class: film_actor EDIT CLASS v
(© Vertex Class
— Edge Class from Property name Property type Actions
1-N Relationship
- - - % Edge Class from last_update DATETIME
N-N Relationship rental

inventory

language
category

N-N Relationship

actor film_actor film

stor

oy country

N -~ ®

Here too, clicking the question mark you can inspect the involved columns for both the relationships.

Teleporter

Details

Edge Class: film_actor EDIT CLASS ~
Property name Property type Actions

last_update DATETIME

N-N Relationship

actor film_actor film
<+ —_—>
ToColumns FromColumns
* actor_id « actor_id

Details

Edge Class: film_actor EDIT CLASS ~
Property name Property type Actions

last_update DATETIME

N-N Relationship

actor film_actor film
«— —_—
FromColumns ToColumns
o film_id e film_id

Search Bar

In the Graph Panel a useful search bar is provided to allow you fast vertex selection according to the vertex class name or the source

table name.

w
w
~

Teleporter

Step 4: Model Mapping (Advanced)

Search | Insert Class or Table name - ACTIONS ~ Details

‘ film
film [Vertex-Class] inventory
film [Table]

film_actor [Vertex-Class]
language

film_actor [Table]

film_category [Table]

fim_actor o gim

film_category [Vertex-Class]

film_gétegory category
has_category

country

In the example above you can see that for each class we have two items, the vertex class name and the source table name. In this case

each couple of items are equal because no classes were renamed nor a name resolver was adoted during the basic graph model building.

Class Renaming

You can rename a class just selecting an element in the graph (vertex or edge) and clicking the "Rename Class" button in the "Edit Class"

dropdown menu.

Teleporter

Step 4: Model Mapping (Advanced) NEXT

Search ‘ Insert Class or Table name v ACTIONS ~ Details

Vertex Class: film
Vertex Class
o Rename Class
— Edge Class from Property name Property type¢
1-N Relationship + Add Property
- == Edge Class from film_id INTEGER e —
N-N Relationship rental
title STRING
-l description STRING EDIT
I STRING EDIT | @ DROP
inomon release_year - W
category
Table: film
Column name Column type Include
;;;; film_id serial v
stord
title varchar
description text
has_couniry
release_year year

Then you just have to choose the new name for the specific class.

Teleporter

Change Class Name

New name* Movie]

The class name will be updated in the graph, in the search bar and in the Details Panel of course.

Property Excluding
We have two ways to exclude a property mapped with a column in the source table:
1. Unflagging the correspondent column name in the source table perspective.

2. Dropping the property from the class perspective.

339

Teleporter

Details

Property name
film_id
title
language_id
length

rating

Column name
film_id
title
description
release_year

language_id

Property Dropping

You can also drop a property via the specific button.

Property type

INTEGER

STRING

SHORT

SHORT

STRING

Column type

serial

varchar

text

year

int2

Actions

Include

340

Teleporter

Warning!

You are dropping description property. Are you sure?

You can have 2 different behaviours depending on whether the property is bound with a column in the source table or not.

e If the property is bound with a source column, when you drop it you will get the same result as when you exclude it, so it will not

be migrated in OrientDB but you can always include it again, as the binding is not deleted at all.

e If the property is not bound with a source column, then when you drop it the property will be definitively deleted.

Property Adding

You can add new properties just clicking the "Add property" button in the "Edit Class" dropdown menu.

Teleporter

Step 4: Model Mapping (Advanced)

Search [Insert Class or Table name ‘ v | ACTIONS ~ Details

Vertex Class: ~ film

Vertex Class
© Rename Class
— Edge Class from Property name Property typ¢
1-N Relationship = A FEEY
- - - % Edge Class from film_id =T —
N-N Relationship rental
title STRING
- description STRING
I STRING EDIT DROP
category
Table: film
Column name Column type Include
2% film_id serial v
storg -
title varchar
description text
has_country
release_year year

In the just opened window you can choose to add a new property never defined before, selecting the "Add new property" radio button,

341

Teleporter

Add Property
© Add New Property

Name* newProperty

Type* STRING

Mandatory Read Only Not Null

Include Property

CANCEL

or re-include some excluded properties if any, selecting the "Include Property" radio button.

Add Property

7 Add New Property

© Include Property

Property* [xdescnp(ion xrelease_year ||

description

release_year
rental_duration

rental_rate

replacement_cost
last_update

Property Editing

You can also edit an existing property: you can choose a different name, type, or just add/remove some constraints.

342

Teleporter

Property Editing

Name* title

Type* STRING

Mandatory " Read Only [Not Null)

CANCEL SAVE

Property Including

We have two ways to include a property mapped with a column in the source table:
1. Flagging the correspondent column name in the source table perspective.

2. Including the property from the OrientDB class perspective through the "Add property" button as shown above.

343

Teleporter

Details

Vertex Class: film

Property name
film_id
title
description

release_year

Column name
film_id
title
description
release_year

language_id

Edge Adding

Property type

INTEGER

STRING

STRING

STRING

Column type

serial

varchar

text

year

int2

EDIT CLASS ~

Actions

Include

(<]

(<)

(<)

(<]

Often you need to add an edge in your graph model, if it's missing for some reason. For example, if you didn't defined some foreign keys

between the tables on which you usually perform join operations, you will lose this kind of info during the importing process and you

will not have any edges in your final Graph Database. Sometimes you just want to enrich the model adding new edges. In both the cases

you have to select a vertex in the graph and then click the "Add Edge" button in the "Action" dropdown menu.

Search | Insert Class or Table name v ACTIONS ~

Show Legend

Add Edge
inventory
has. inventory
rental —
language
e
)
W
W@
subtitle

category

has_category

custgner

country

Then you have to drag the edge till the target vertex and click over it.

Search | Insert Class or Table name v ACTIONS ~

inventory

has_inventory
rental

language

subtitle

O

category

country

A new window will open where you have to specifiy the name of the Edge class for the new edge instance and some map ping info:

Teleporter

e fromTable: the foreign table that imports the primary key of the parent table.
e fromColumns: the attributes involved in the foreign key.
e toTable: the parent table whose primary key is imported by the foreign table.

e toColumns: the attributes involved in the imported primary key.

As said above, when we want to create a new edge instance, we can create a new Edge class

Add Edge

Edge Class

© Add New Edge Class

Edge Class Name* HasSubtitle

Choose Existent Edge Class

Mapping Info

From Table* film

From Columns* | xsubtitle_id

To Table* subtitle

To Columns* | x subtitle_id

Direction* direct

CANCEL SAVE

or just choose a preexisting Edge class

Add Edge
Edge Class
") Add New Edge Class

© Choose Existent Edge Class

Edge Class Name* has_film

Mapping Info

From Table* subtitle

From Columns* (xfilm_id |

To Table* film

To Columns* Lxlilm,id

Direction* [direct

oance

Edge Dropping
When you select an edge in the graph model, you have 2 choices:

1. Delete the Edge class with all its instances

346

Teleporter

Teleporter

Step 4: Model Mapping (Advanced)

PREV NEXT

Search | Insert Class or Table name ‘ A ‘ ACTIONS ~ Details

inventory

inventory
rental s

fim_cgfegory
has_category

1. Delete only the selected instance of the specific Edge Class

Teleporter o

Step 4: Model Mapping (Advanced)

Search | Insert Class or Table name

inventory

inventory
rental hee

actor

i
fim_actor o
-

v
has_category

has_aity

Edge Class: has_film

r— Drop the Edge Class and all its occurrences in the graph.

sublitle
category
1-N Relationship

film_actor

ACTIONS ~ Details

Edge Class: has_film

Drop just the selected Edge occurrence.
If the selected edge instance is the last one present in the graph,
the Edge Class will be dropped.

T

subtitle

category

1-N Relationship

film_actor

START MIGRATION

EDIT CLASS v

Rename Class
Drop Edge Class
Drop Edge Instance

+ Add Property

film

START MIGRATION

EDIT CLASS v

Rename Class

r': Drop Edge Class

]

Drop Edge Instance

+ Add Property

film

Neo4j to OrientDB Importer

In Studio 2.2 you can configure the execution of a new plugin, which allows you to import your Neo4j database into OrientDB in few
simple steps.

Imported neo4j items are:

e nodes

relationships
e unique constraints

e indexes
NOTE: This feature is available both for the OrientDB Enterprise Edition and the OrientDB Community Edition.

This visual tool consists in a wizard composed of 2 simple steps. Let's have a look at each configuration step.

Step 1
In the first step you have to type the following required parameters:

e Database Host , as the address of the host where the neo4j server is available
e Port , as the port where your neo4j server is listening for new connections via the bolt binary protocol (default port is 7687)
e User Name , as the username to access the neo4j server

e Password , as the password to access the neo4j server

After you typed all the required parameters for the migration you can test the connection with the source database.
Importer

Home Step 1: Neo4j Server Connection m NEXT

Teleporter
Database Host localhost
Neo4j
Importer
Port 7687
User Name neo4j n
Password | .ecee
Connection is alive

In the second step you have to specify the parameters about the OrientDB target database and some additional info:

® Connection protocol , as the protocol adopted during the migration in order to connect to OrientDB. You have to choose among:
o plocal: persistent disk-based, where the access is made in the same JVM process
o memory: all data remain in memory
® OrientDB Database Name , as the target database name where the Neo4j database will be migrated. The database will be created by
the import tool if not present. In case the database already exists, the Neo4j to OrientDB Importer will behave accordingly to the
checkbox below.

® Log Level , as the level of verbosity printed to the output during the execution. You can choose among:

http://orientdb.com/orientdb-enterprise
http://orientdb.com/download/

o NO
o DEBUG
o INFO
o WARNING
o ERROR
e Overwrite Database , checkbox to overwrite OrientDB target database if it already exists.
e Create indices on edges , checkbox to create indices on imported edges in OrientDB. In this way an index will be built for each

Edge class on 'Neo4jRelld' property.

Importer
Horis Step 2: Target OrientDB Database
Teleporter
Connection Protocol local] ?
Neodj & i .
Importer
P Database Name targetdb

Additional options

Log Level INFO B
. P
Overwrite Database ?
o 2
Create indices on edges ?

Once we have collected all the info, you can run your configured job through the START MIGRATION button, then the job progress

monitor will be displayed:

Importer
Home Migration to OrientDB
Teleporter
NEW MIGRATION
Status: RUNNING
Neo4j
Importer From: bolt://localhost:7687

To: plocal:3ORIENTDB_HOME/databases/target Protocol: plocal

Importing Neo4j database from server: 'bolt://localhost:7687" into OrientDB database: ‘target' (Path: /Users/orientdb-enterprise-2.2.26/databases/target)
Neo4j to OrientDB Importer - v.2.2.26 - PHASE 1 completed!

Getting all Nodes from Neo4j and creating corresponding Vertices in OrientDB...

Added OrientDB Vertices: 718 (0% done)

Added OrientDB Vertices: 3647 (0% done)
Added OrientDB Vertices: 9570 (1% done)
Added OrientDB Vertices: 18380 (1% done)
Added OrientDB Vertices: 29000 (2% done)
Added OrientDB Vertices: 41019 (3% done)
Added OrientDB Vertices: 53414 (4% done)
Added OrientDB Vertices: 64857 (4% done)
Added OrientDB Vertices: 78000 (5% done)

At the end of the migration, statistics about the process are reported as shown below:

Importer

Home Migration to OrientDB

Teleporter

NEW MIGRATION
Status: FINISHED

Neo4j
! From: bolt:/localhost:7687

Importer
To: plocal:3ORIENTDB_HOME/databases/target ~ Protocol: plocal

=INUT UNIQUE TNUICES CTeateu uue [0 Taiiure T Crednnyg UNIQUE TNUices TUU7e)

- Found Neo4j (non-constraint) Indices E26;
- Imported OrientDB Indices 18 (31%)

- Additional internal Indices created 166

- Total Import time: :00:39:42

-- Initialization time :00:00:00

-- Time to Import Nodes :00:01:50 (13485.44 nodes/sec)

-- Time to Import Relationships :00:18:16 (7134.46 rels/sec)

-- Time to Import Constraints and Indices :00:09:47 (0.04 indices/sec)

-- Time to Create Internal Indices (on vertex properties 'neo4jNodelD' & 'neo4djLabelList) 00:03:59 (0.02 indices/sec)

-- Time to Create Internal Indices (on edge property 'neo4jRellD') : 00:05:47 (0.18 indices/sec)

Neo4j to OrientDB Importer - v.2.2.26 - PHASE 4 completed!

Migration Details

Internally, the Neo4j to OrientDB Importer makes use of:

e the Neo4j's bolt connector based on the the Bolt binary protocol to read the graph database from Neo4;j
e the OrientDB's java API to store the graph into OrientDB

The migration consists of four phases:

e Phase 1: Connection initialization to Neo4j
e Phase 2: Migration of nodes and relationships present in the source graph database
e Phase 3: Schema migration

e Phase 4: Shutdown of the connection to Neo4j and summary info reporting

General Migration Details

The following are some general migration details that is good to keep in mind:
e In case a node in Neo4j has no Label, it will be imported in OrientDB into the Class "GenericClassNeo4jConversion".
e In case a node in Neo4j has multiple Labels, it will be imported into the class "MultipleLabelNeo4jConversion".
e List of original Neo4j Labels are stored as properties in the imported OrientDB vertices (property: "Neo4jLabelList").

e During the import, a not unique index is created on the property "Neo4jLabelList". This allows you to query by Label even over
nodes migrated into the single class "MultipleLabelNeo4jConversion", using queries like: SELECT FROM V WHERE Neo4jLabellList
CONTAINS 'your_label here' or the equivalent with the M ATCH syntax: MATCH {class: V, as: your_alias, where:

(Neo4jLabelList CONTAINS 'your_label'} RETURN your_alias .

e Original Neo4j 1ps are stored as properties in the imported OrientDB vertices and edges (Neo4jNodeId for vertices and

Neo4jRelID for edges). Such properties can be (manually) removed at the end of the import, if not needed.

e During the import, an OrientDB index is created on the property Neo4jNodeId for all imported vertex classes (node's Labels in
Neo4j). This is to speed up vertices lookup during edge creation. The created indexes can be (manually) removed at the end of the

import, if not needed.

e In case a Neo4j Relationship has the same name of a Neo4j Label, e.g. "RelationshipName", the Neo4j to OrientDB Importer will
import that relationship into OrientDB in the class E_RelationshipName (i.e. prefixing the Neo4j's RelationshipType with an

E_).

e Neodj Nodes with same Label but different case, e.g. LABEL and LAbel will be aggregated into a single OrientDB vertex Cclass .

e Neodj Relationship with same name but different case, e.g. relaTIONship and RELATIONSHIP will be aggregated into a single
OrientDB edge class

e Migration of Neo4j's "existence" constraints (only available in the Neo4j's Enterprise Edition) is currently not implemented.

e During the creation of properties in OrientDB, Neo4j char datatypeis mappedtoa string datatype.

Details about Schema Migration
The following are some schema-specific migration details that is good to keep in mind:

e If in Neo4j there are no constraints nor indexes, and if after we drop, after the migration, the properties and indexes created for
internal purposes (Neo4jNodeID , Neo4jRelID , Neo4jLabellList and corresponding indexes), the imported OrientDB database is

schemaless.

e If in Neo4j there are constraints or indexes, the imported OrientDB database is schema-hybrid (with some properties defined). In

particular, for any constraint and index:
o The Neo4j property where the constraint or index is defined on, is determined.
o A corresponding property is created in OrientDB (hence the schema-hybrid mode).
e If a Neo4j unique constraint is found, a corresponding unique index is created in OrientDB

o In case the creation of the unique index fails, a not unique index will be created. Note: this scenario can happen, by design,
when migrating nodes that have multiple Labels, as they are imported into a single vertex class).

e If a Neo4j index is found, a corresponding (not unique) OrientDB index is created.

Migration Best Practices

According to the migration logic shown so far, we can define the following best practices, adoptable before the migration towards
OrientDB:

1. Check if you are using Labels with same name but different case, e.g. LABEL and LAbel and if you really need them. If the correct
Label is Label, change LABEL and LAbel to Label in the original Neo4j database before the import. If you really cannot change
them, be aware that with the current version of the Neo4j to OrientDB Importer such nodes will be aggregated into a single

OrientDB vertex Class .

2. Check if you are using relationships with same name but different case, e.g, relaTIONship and RELATIONSHIP and if you really
need them. If the correct relationship is Relationship, change relaTIONship and RELATIONSHIP to Relationship before the import.
If you really cannot change them, be aware that with the current version of the Neo4j to OrientDB Importer such relationships will

be aggregated into a single OrientDB edge class .

3. Check your constraints and indexes before starting the import. Sometime you have more constraints or indexes than needed, e.g. old
ones that you created on Labels that you are not using anymore. These constraints will be migrated as well, so a best practice is to
check that you have defined, in Neo4j, only those that you really want to import. To check constraints and indexes in Neo4j, you

can type :schema in the Browser and then click on the "play" icon. Please delete the not needed items.

4. Check if you are using nodes with multiple Labels, and if you really need more than one Label on them. Be aware that with current
version of the Neo4j to OrientDB Importer such nodes with multiple Labels will be imported into a single OrientDB class

("MultipleLabelNeo4jConversion").

Teleporter

OrientDB Teleporter is a tool that synchronizes a RDBMS to OrientDB database. You can use Teleporter to:

e Import your existing RDBMS to OrientDB

e Keep your OrientDB database synchronized with changes from the RDBMS. In this case the database on RDBM S remains the
primary and the database on OrientDB a synchronized copy. Synchronization is one way, so all the changes in OrientDB database
will not be propagated to the RDBM S

Teleporter is fully compatible with several RDBM S that have a JDBC driver: we successfully tested Teleporter with Oracle,
SQLServer, My SQL, PostgreSQL and HyperSQL. Telep orter manages all the necessary type conversions between the different DBM Ss
and imports all your data as Graph in OrientDB.

NOTE: This feature is available both for the OrientDB Enterprise Edition and the OrientDB Community Edition. But beware: in
community edition you can migrate your source relational database but you cannot enjoy the synchronize feature, only available in
the enterprise edition.

How Teleporter works

Teleporter looks for the specific DBM S meta-data in order to perform a logical inference of the source DB schema for the building of a

corresponding graph model. Eventually the data importing phase is performed.
Teleporter has a pluggable importing strategy. Two strategies are provided out of the box:

e naive strategy, the simplest one
e naive-aggregate strategy. It performs a "naive" import of the data source. The data source schema is translated semi-directly in a

correspondent and coherent graph model using an aggregation policy on the junction tables of dimension equals to 2

To learn more about the two different execution strategies click here.

Usage
Teleporter is a tool written in Java, but can be used as a tool thanks to the teleporter.sh script (or .bat on Windows).

./oteleporter.sh -jdriver <jdbc-driver> -jurl <jdbc-url> -juser <username>
-jpasswd <password> -ourl <orientdb-url> [-s <strategy>]
[-nr <name-resolver>] [-v <verbose-level>]
([-include <table-names>] | [-exclude <table-names>])
[-inheritance <orm-technology>:<ORM-file-url>]
[-conf <configuration-file-location>]

Arguments

e -jdriver is the driver name of the DBM S from which you want to execute the import (it's not case sensitive)
e -jurl is the JDBC URL giving the location of the source database to import
e -ourl is the URL for the destination OrientDB graph database
e -juser (optional) is the username to access the source database
e -jpasswd (optional) is the password to access the source database
e -s (optional) is the strategy adopted during the importing phase. If not specified naive-aggregate strategy is adopted. Possible
values:
o naive: performs a "naive" import of the data source. The data source schema is translated semi-directly in a correspondent and
coherent graph model
o naive-aggregate: performs a "naive" import of the data source. The data source schema is translated semi-directly in a
correspondent and coherent graph model using an aggregation policy on the junction tables of dimension equals to 2
e -nr (optional) is the name of the resolver which transforms the names of all the elements of the source database according to a
specific convention (if not specified original convention is adopted). Possible values:

o original: maintains the original name convention

http://orientdb.com/orientdb-enterprise
http://orientdb.com/download/

o java: performs name transformations on all the elements of the data source according to the Java convention
e -v(optional) is the level of verbosity printed to the output during the execution (if not specified INFO level will be adopted).
Levels:
o 0: NO logging messages will be printed
o 1: DEBUG level logging messages
o 2:INFO level logging messages (default)
o 3: WARNING level logging messages
o 4: ERROR level logging messages
e -include (optional) allows you to import only the listed tables
e -exclude (optional) excludes the listed tables from the importing process
e -inheritance (optional) executes the import taking advantage of OrientDB's polymorphism

e -config allows you to define a custom configuration for y our importing job

Access Credentials

By convention three users are always created by default each time a new database is built. Passwords are the same as the user name.

Default users are:

n

e admin , with default password " admin ", has access to all functions without limitation.

0

e reader , with default password " reader ", is the classic read-only user. The reader can read any records but can't modify or

delete them and has no access to internal information such as users and roles, themselves.

e writer , with the default password " writer ", is like the user reader but can also create, update, and delete records.

For further informations about the Security of the OrientDB database click here.

Example of "testdb" importing from PostgreSQL DBMS with default parameters

./oteleporter.sh -jdriver postgresql -jurl jdbc:postgresql://localhost:5432/testdb
-juser username -jpasswd password -ourl plocal:$ORIENTDB_HOME/databases/testdb

With these parameters it will be performed an import according to the default settings:

e strategy adopted: naive-aggregate
e name resolver: original name resolver
e level of verbosity: INFO (2nd level)

Example of "testdb” importing from PostgreSQL DBMS with customized optional
parameters

./oteleporter.sh -jdriver postgresql -jurl jdbc:postgresql://localhost:5432/testdb
-juser username -jpasswd password -ourl plocal:$ORIENTDB_HOME/databases/testdb
-s naive -nr java -v 1

With these parameters it will be performed an import according to the chosen settings:

e strategy adopted: naive
e name resolver: java name resolver
e level of verbosity: DEBUG (1st level)

Teleporter Execution

Teleporter execution consists of 4 steps:

1. Source DB Schema Building: the source database schema is built by querying the source DB metadata.
2. Graph Model Building: a correspondent and coherent Graph M odel is built.

3. OrientDB Schema Writing: the OrientDB schema is written according to the Graph M odel in memory.
4. OrientDB importing: importing data from source database to OrientDB.

Thus the whole workflow is:

https://github.com/orientechnologies/orientdb-docs/blob/master/Database-Security.md

MAPPER SCHEMA WRITER

E-R MODEL GRAPH MODEL (3.1)

= @ 0.0 0-Q

=
QUERY —r SCHEMA
DEFINITION

(1.1) B2

METADATA
.-/

“4——quERY WRITE
IMPORT ENGINE

(4.1) (4.2) (4.3)

SOURCE DB 7 N

ORIENTDB

Below is reported a Teleporter execution dump:

KRRk @ F kiRt 1 ~/orientdb-community-2.1.0/bing ./oteleporter.sh -jdriver postgresql -jurl jdbc:postgresql://localhost:5432/dvdrental -juser postgres -jpasswd postgres -ourl plocal:/home/xsxtsstk/orie
ntdb-community-2.1.8/databases/dvdrentalPostgresQLTest -s naive -nr java

e e SN N Lo, E e
i, e R N R ST
o M o e o e /el (/A /S,
e /S [i 70 I I/ 11
Jorientdb.com/teleporter
(1/4) Source DB Schema building: Elapsed: 00:00:00 Remaining: 00:00:00 Warnings:
(2/4) Graph Model building: Elapsed: 00:00:00 Remaining: 00:00:00 Warnings:
o 65 60:00:60

-1
A o
(3/4) OrientDB Schema writing: 5 .1 Elapsed Remainin Warnings
(4/4) OrientDB importin .1 Elapsed: o 17 Remaining: 60:00:60 Warnings: 5 Records: 44820/44820

Importing complete in 00:
SUMMARY

Source DB Schema
Entities: 15
Relationships: 18

orientDB Schema

orientDB Importing

[Analyzed Records: 44820/44826
[Added Vertices on OrientDB: 44820
Updated Vertices on OrientDB: ©
[Added Edges on OrientDB: 112233

Warning Message:

The original type 'mpaa_rating' is not convertible into any OrientDB type thus, in order to prevent data loss, it will be converted to the OrientDB Type String.
The original type 'year' is not convertible into any OrientDB type thus, in order to prevent data loss, it will be converted to the OrientDB Type String.

The original type '_text' is not convertible into any OrientDB type thus, in order to prevent data loss, it will be converted to the OrientDB Type String.

The original type 'tsvector' is not convertible into any OrientDB type thus, in order to prevent data loss, it will be converted to the OrientDB Type String.
The original type 'bpchar' is not convertible into any OrientDB type thus, in order to prevent data loss, it will be converted to the OrientDB Type String.

Installation and Configuration

Installation

Teleporter is out-of-the-box both in Community and Enterprise Edition, so you don't need any configuration or modification. But
beware: in Community Edition you can migrate y our source relational database but you cannot enjoy the synchronize feature,

only available in the Enterprise Edition.

You can run the tool through the script as described in the Home page or just execute it via OrientDB Studio as described here.

Driver Configuration.

Automatic Driver Configuration

Teleporter provides an automaic driver configuration: when the application starts, it looks for the required driver. If the driver is not
found the application will download it and it will automatically configure the classpath, not delegating anything to the end user.

So when you run Teleporter you just have to indicate the name of the DBM S you want to connect. Teleporter is compatible with
Oracle, My SQL, PostgreSQL and HyperSQL products, thus you have to type one of the following parameters (not case sensitive):

e Orade

o SQLServer
e MySQL

o PostgreSQL
e HyperSQL

Teleporter will search for the correspondent driver in the SORIENTDB_HOM E/lib folder and if it's not present, it will download the
last available driver version. If a driver is already present in the folder, then it will be used for the connection to the source DB.
Therefore if you want use a new driver version, you just have to delete the older version and run Teleporter which will download and

configure for you the last available version.

./oteleporter.sh -jdriver postgresql -jurl jdbc:postgresql://localhost:5432/testdb
-juser username -jpasswd password -ourl plocal:$ORIENTDB_HOME/databases/testdb
-s naive -nr java -v 2

Manual Driver configuration

It's possible to perform a manual configuration downloading own favourite driver version and properly defining the classpath in the

application. Below are reported last driver tested versions with some useful information for download, configuration and use.

Last
Driver Tested Path pattern Path Example
Version

Oracle 12c jdbc:oracle:thin:@HOST:PORT:SID jdbc:oracle:thin:@localhost:1521:orcl
SQLServer g(()lllferver jdbc:sqlserver://HOST:PORT;databaseName=DB](it))c:sqlserver://localhost:1433;databaseNarn(
MySQL 5.1.35 jdbc:mysql:/HOST:PORT/DB jdbc:my sql://localhost:3306/testdb
PostgreSQL 9.4-1201 jdbc:postgresql:/HOST:PORT/DB jdbc:postgresql://localhost:5432/testdb
HyperSQL 232 jdbc:hsqldb:hsql:/HOST:PORT/DB OR jdbc:hsgldb:hsql:/localhost:9500/testdb OR

yp o idbc:hsqldb:file:FILEPATH idbc:hsgldb:file:testdb

(*) If the source database contains spaces in the name you have to use a URL like this:

“Source DB” — -jurl “jdbc:sqlserver:/localhost:1433;databaseName={ Source DB};”

http://www.oracle.com/technetwork/database/features/jdbc/default-2280470.html
http://www.java2s.com/Code/JarDownload/sqljdbc4/sqljdbc4-2.0.jar.zip
http://dev.mysql.com/downloads/connector/j/
https://jdbc.postgresql.org/download.html
http://central.maven.org/maven2/org/hsqldb/hsqldb/2.3.3/hsqldb-2.3.3.jar

Execution Strategies

Teleporter provides two different import strategies:

e naive strategy

e naive-aggregate strategy

Both strategies build a schema in OrientDB starting from the source DB schema: each table (known also as Entity) and each
Relationship in the DB is inferred from these metadata, therefore if you didn't defined some constraints, such as foreign keys between
the tables on which you usually perform join operations, you will lose this kind of info during the import process.

For example if foreign keys are missing, you will not have any edges in your final Graph Database.

You can overcome this limit by defining an Import Configuration that allows you to add new relationships or modify those already
present in your source database schema.

Once built the OrientDB schema, the real import process begins.

Now both strategies will be individually discussed below.

Naive Strategy

This strategy follows a basic approach for the import. The source DB schema is directly translated in the OrientDB schema as follows:

1. Each Entity in the source DB is converted into a Vertex Type.
2. Each Relationship between two Entities in the source DB is converted into an Edge Type (remember, relationships in your DB
schema are represented by the foreign keys).

Thus all records of each table are imported according to this "schemas-mapping": each pair of records on which it's possible to perform a

join operation, will correspond to a pair of vertices connected by an edge of a specific Edge Type.

Example 1 - Without Join Table

Source DB schema translation in OrientDB schema:

Execution strategies

FILM

o film_id
title
description
year
language
last_update

LANGUAGE

film_id
title
description
year
language

last_update

Correspondent records import:

HasLanguage

=]

language_id
name

last_update

language_id
name

last_update

Execution strategies

HasLanguage

HasLanguage

HasLanguage

Example 2 - With Aggregable Join Table

Source DB schema translation in OrientDB schema:

FILM
film_id title description year language last_update
FOO1 Pulp Fiction The lives of two mob hit men... 1994 L0O01 Fri, 28 Apr 1995
F0O02 Shutter Island A U.S. Marshal investigates the... 2010 LOO1 Thu, 05 Jul 2012
FO03 The departed = An undercover cop and a mole in... 2006 L0001 Sat. 13 Oct 2007

LANGUAGE
language_id name last_update
English Wed, 12 Dec 1990

w

Execution strategies

ACTOR

' actor_id
first_name
last_name

last_update

FILM_ACTOR

actor_id
first_name
last_name

last_update

Starting from the following tables

HasActor

O

actor_id
film_id
last_update

FILM

actor_id
film_id

last_update

HasFilm

film_id
title
description
year
language

last_update

film_id
title
description
year
language

last_update

ACTOR FILM_ACTOR
actor_id | first_name | last_name last_update actor_id film_id last_update
A001 John Travolta Sat, 18 Feb 1984 A001 FOO01 . Fri, 28 Apr 1995
A002 Samuel L. Jackson 'Wed, 21 Dec 1988 A002 F001 Fri, 28 Apr 1995
A003 Bruce Willis Tue, 19 Mar 1985 A003 F001 ' Fri, 28 Apr 1995
A004 Leonardo DiCaprio | Mon, 11 Nov 1996 A004 F002 Thu, 05 Jul 2012
A005 Ben Kingsley Sat, 31 Dec 1983 A005 F002 Thu, 05 Jul 2012
A006 Mark Ruffalo Sat, 22 Nov 1997 A006 F002 Thu, 05 Jul 2012
A007 Jack Nicholson . Wed, 22 Apr 1970 A004 F003 .Sat, 13 Oct 2007
A008 Matt Damon Sun, 08 Oct 2000 A007 F003 'Sat, 13 Oct 2007
A008 FO03 Sat, 13 Oct 2007
FILM
film_id title description year language last_update
FO01 Pulp Fiction The lives of two mob hit men... 1994 LO01 Fri, 28 Apr 1995
F002 Shutter Island A U.S. Marshal investigates the... 2010 LOO01 Thu, 05 Jul 2012
FOO03 | The departed | An undercover cop and a mole in... 2006 LOO01 .Sat. 13 Oct 2007

we will obtain the following graph:

HasActor F001 HasActor F002
A001 L A004
HasFilm HasFilm
HasActor F0O1, HasFilm HasActor F002, HasFilm
A002 A005
HasActor
HasFilm HasFilm
HasActor FOO1, G HasActor F002,
A003 A006

F003,

A004
HasFilm
HasActor F003, HasFilm
A007
HasActor F003, HasFilm
A008 A008

Naive-Aggregate Strategy

Unlike the first strategy, this one performs aggregation on join tables of dimension equals to 2, that is to say those tables which map two
tables together by referencing the primary keys of each data table through a foreing key. The join tables of dimension greater than 2 are
ignored by the aggregation algorithm. Thus each candidate join table is converted into an appropriate edge, and each field not involved in
any relationship with other tables (hence not involved in any foreign key in the source DB schema) is aggregated in the properties of the

new built edge.

Referring to the scenario of the last example is evident as even if the new DB doesn't reflect the original DB model, the aggregation leads

to a great saving in terms of resources and avoids a substantial overhead. The OrientDB schema after the aggregation process comes out

simpler, hence also the import result it is.

Example 3 - With Aggregable Join Table

Source DB schema translation in OrientDB schema:

ACTOR FILM
FILM_ACTOR
actor_id L
- - H +o! actor_id " film_id
irst_name .
- film_id title
last_name e
B last_update description
last_update year
language
last_update
/’_\\ e
/ HasActor—_ ¢
\ ACTOR last_update [
actor_id film_id
first_name title
last_name ‘ description
last_update | year
language
last_update

Through this strategy, starting from the same previous scenario

Execution strategies

ACTOR FILM_ACTOR
actor_id | first_name | last_name last_update actor_id film_id last_update

A001 John Travolta Sat, 18 Feb 1984 A001 FO01 Fri, 28 Apr 1995
A002 . Samuel L. Jackson .Wed, 21 Dec 1988 A002 F001 Fri, 28 Apr 1995
A003 Bruce Willis Tue, 19 Mar 1985 AQ03 ‘ FO001 . Fri, 28 Apr 1995
A004 Leonardo DiCaprio | Mon, 11 Nov 1996 A004 F002 Thu, 05 Jul 2012
A005 Ben Kingsley Sat, 31 Dec 1983 A005 F002 Thu, 05 Jul 2012
A006 Mark Ruffalo Sat, 22 Nov 1997 A006 F002 Thu, 05 Jul 2012
A007 . Jack Nicholson . Wed, 22 Apr 1970 A004 ' F003 .Sat, 13 Oct 2007
A008 Matt Damon Sun, 08 Oct 2000 A0Q7 FO03 | Sat, 13 Oct 2007

A008 FO03 Sat, 13 Oct 2007

FILM
film_id title description year language last_update
F001 Pulp Fiction The lives of two mob hit men... 1994 LOO1 Fri, 28 Apr 1995
F002 Shutter Island A U.S. Marshal investigates the... 2010 LOO01 Thu, 05 Jul 2012
FOO03 The departed | An undercover cop and a mole in... 2006 LOO1 Sat, 13 Oct 2007
this time we will obtain a less complex graph:
.‘\HasActor
HasActor A004
HasActor
.‘/HA HasActor o
HasActor
HasActor A006

®

HasActor
A008

P

Sequential Executions and One-Way Synchronizer

Teleporter is conceived to support many sequential executions from the same source DB to the same graph DB of OrientDB, in this

way you can:

e personalize your import, combining the different strategies and settings by including or excluding the chosen tables and by
running Telep ort more times in order to obtain a mo